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SYMBOLS

All vectors are denoted by lower case letters.

All matrices are denoted by capital Roman letters.

All elements in the matrices are denoted by the corresponding

lower case Roman letters.

Small Roman

o

(1)

e

ith row of the matrix C

base of the natural system of logarithms '

constant parameter vector

number

system-

number

number

of measurements
order
of inputs

of linearly independent rows of 0 that involve a

multiplication by the ith row of the observation matrix

ith 7row of the matrix P

attitude rate; the quotignt of n/m; the number of unknown

parameters

ith column of the matrix Q

remainder of n/m

complex number

time

final time

discretized time

forward velocity; input vector

ZeTOo mean noise

state vector

output

vector

ix



Ye difference between y and Yt

Ye output vector in absence of uncertainty

z state vector

(Ja linearized approximation of ( )

( )5 ith component of the vector ( )

( )i,j element in the ith row and jth column on the matrix
denoted by capital ( )

Ok ith vector in a sequence of vectors

( )(i) » ith row of the matrix denoted by capital ( )

( )(i) _ith column of the matrix denoted by capital ()

(N nominal or initial estimate of ( )

( )o trim condition; initial conditions

( )T transpose of the vector ( )

Capital Roman

Any capital letters that appear in the text and which are not
defined here are constant parémeter matrices.
A time varying matrix of sensitivity functions
Ag portion of the matrix of sensitivity functions not correlated

with the known system input

At . difference between A and Ag
E{ } expected value of { }

I ﬂ identity matrix

Iy inertia about the pitch axis
J ‘ least squares functional

La’Lq’Lﬁe partial derivatives of 1lift with respect to o, q, and &g,

respectively



Ma»Mq:Mde partial derivatives of moment with respect to a, q, and §¢,

respectively
Op observability matrix (see section 3.2)
P covariance matrix; matrix used in constructing the

canonical transformation (see section 3.2)

Q inverse of P
T thrust
()i matrix ( ) multiplied by itself i times

Small Greek

o angle of attack

Y vector of unknown parameters

§( ) perturbation of ( ); unit impulse function

Se elevator deflection

853 Kronecker delta

€ error

Ei ~ith vector in a sequence of vectors used to generate the

sensitivity functions

9 vector [ng E ng E - '] ; attitude

Y residuals

pi sequence of vectors

T dummy variable in the convolution of two functions b
( e error in ( )

( )% jth component of the vector ( )i

( IN nominal or initial estimate of ( )

Subscripts and Superscripts

=
1

—
=

Xi



IDENTIFICATION OF SYSTEM PARAMETERS FROM
INPUT-OUTPUT DATA WITH APPLICATION
TO AIR VEHICLES
Dallas G. Denery
Ames Research Center
SUMMARY

This report is concerned with measurements of the inpué and output
to a dynamic system in order to estimate the parameters in the differen-
tial equations that describe the input-output behavior. Two general
methods can be used to estimate these parameters: the equations of
motion method and th¢ response curve fitting method. The equations of
motion method is characterized by a single step solution that does not
require prior estimation of the unknown parameters. However, unbiased
noise in measurements of the system response causes a bias in the esti-
mated parameters. The response curve fitting method is characterized by
iterative solution techniques that require prior estimation of the
unknown parameters and provides an unbiased estimate. The algorithm
presented here uses the best features of both methods. If the system
noise is small, the algorithm does not require a prior estimate of the
unknown parameters, and if the noise has a zero mean, the final parameter
estimates will not be biased. The algorithm is applied to simulated and
flight data. o

A feature of this report is the development of a canonical form for
multioutput systems. When the unknown system is modeled in this canon-
ical form, an identifiable set of parameters is defined and can be
estimated by the combined algorithm. Although other canonical forms for

multivariable systems are available, the parameters in those forms cannot

be estimated directly by the combined algorithm.



In order to use the combined algorithm, the sensitivity functions
for the system parameters and initial conditions must be computed. For
constant coefficient linear systems all possible sensitivity functions
can be obtained by linear combinations of the solution to only (p + 2)
differential equations of order n, where p is the number of indepen-
dent inputs toAthe system, and n 1is the minimal order realization for
the system. %his is a smaller number of differential equation solutions
than was previously thought to be necessary for the generation of the
sensitivity functions.

An analogy is established between the equations of motion theory
developed by Shinbrot and the concept of a state observer as formulated
and discussed by Luenberger and Bryson. It is shown that observers of
reduced order can be designed quite easily using the equations of motion

theory.



I INTRODUCTION

The equations of motion for a flight Vehicle describe its response
to external disturbances and control inputsT They are based on Newton's
laws as formulated by Euler (ref. 1). The forces in these equations are
primarily aerodynamic, gravitational, and propulsive. These forces are
functions of the vehicle state variables (position, velocity, angular
orientation, and rate of change of angular orientation) and of the vehi-
cle's control variables. If the deviations in the state and control
variables from an equilibrium state are small, the vehicle's response
can often be well approximated by a set of constant-coefficient linear
equations. The coeffiéients in these constant-coefficient, linear,
differential equations are called the stability derivatives. The sta-
bility derivatives can be estimated from aerodynamic theory or from
wind-tunnel tests or both. The linearized equations of motion can then
be used to predict small perturbations of the vehicle response about
steady-state flight prior to flight. Needless to say there are often
significant differences between the vehicle's predicted and actual
response. These discrepancies can usually be attributed to errors in
the estimates of the stability derivatives, and motivate the use of the
flight data to improve the estimates of these stability derivatives.

1.1 IDENTIFICATION TECHNIQUES

The use of flight measurements to improve the estimates of the
stability derivatives has been an area of research throughout the history
of aviation (ref. 2). The first work in this area appears tc have
occurred in the years 1922 - 1925. During this time the National

Advisory Committee for Aeronautics demonstrated the possibility of



determining natural frequencies, damping ratios, time constants, and
steady-state gains from flight data (réfs. 3, 4). The techniques
developed during this period were used with little change for the next
20 years. However, after World War II, many contributions were made to
the analysis of flight data. Most of the methods used today have, as a
basis, the results bbtained during the years 1947 through 1953.

It was during this period that frequency response methods were
first applied to the analysis of flight data. These methods included
the analysis of steady-state oscillatory responses as well as the anal-
ysis of transient responses. In a particular application of the steady-
state oscillatién method (ref. 5) (taken from ref. 2), the elevator of
an airplane was oscillated by means of an autopilot at a series of
frequencies (0.5 to approximately 1.5 Hz) and the response of the air-
plane was measured. From these data a frequency response curve was
established. Although the-procedure worked satisfactorily, it required
considerable flight time. Attention was therefore directed to the anal-
ysis of data from transient responses such as the response to a pulse in
elevator deflection. The frequency response of the vehicle was obtained
by taking the Fourier transforms of the input and response measurements
and forming their ratio at discrete frequencies (ref. 6). This proce-
dure reduced the required flight time to a small fraction of that necessary
for steady-state oscillation tests. An inherent difficulty in any
frequency response method, however, is that a frequency response curve
is obtained instead of the parameters in the equations of motion.

Methods were developed for curve fitting a transfer function of the



assumed form to the measured frequency response curve in order to obtain
an estimate of the parameters. Some of these methods are discussed in
references 7 and 8.

In addition to frequency response methods, several other parameter
estimation procedures evolved during this period which could be used to
estimate the coefficients in the assumed equations of motion directly.
Milliken credits Seckel with having categorized these methods as being
either equations of motion methods or as response curve fitting methods
(ref. 2).

The eQuations of motion methods are formulated by substituting
measurements of‘the'system variables (states and control positions) and
their derivatives in the assumed equations of motion for the system.

The resulting equations at any discrete time are then algebraic in the
unknown parameters. In many cases these algebraic equations are linear
and the parameters can be estimated by the solution of a set of linear
equations. Shinbrot generalizéd'this concept by considering integral
transforms of the assumed equations of motion for the system, and sub-
stituting integral transforms of the measurements into these equations
(ref. 8). The net result is still a set of equations which are algebraic
in the unknown coefficients. Shinbrot showed that the curve fitting
methods used to obtain coefficients from frequency response curves could
be considered as equations of motion methods, within this generalized
interpretation. It is shown in this report that the construction of
linear observers can also be considered as an application of the general-
ized equations of motion theory. This latter material is not directly
related to the rest of the thesis but is included in appendix B as a

matter of interest.



In the application of an equations of motion method, there are
typically more equations than unknown parameters. A least squares error
criterion is therefore used to estimate the parameters. It was realized
that this was not a correct application of the principle of least squares
if noise was present in the measurements (ref. 9). In fact, this proce-
dure will cause a bias in the parameter estimates even though the noise
in the measurements has zero mean (refs. 10, 11). By a bias, we mean
that the expected value of the error in the parameter estimates is not
zero and does not go to zero with increasing amounts of data.

Thé response curve fitting methods were developed in order to apply
the principlé of least squares correctly (refs. 7, 9, 12). 1In these
methods, the measured input is used to drive a model of the vehicle.

The unknown parameters in the model are then adjusted until the model
response agrees with the measured response in a least squares sense. It
has been shown that the response curve fitting methods do not cause a

bias to first order in the éafameter estimates if there is no noise in the
measured input and if the noise in the measurements of the output has zero
mean (refs. 10, 13). Because the model fesponse is a nonlinear function
of the unknown parameters, an iterative estimation procedure is usually
required. Shinbrot proposed several such algorithms for éstimating the
unknown parameters. These included a gradient procedure, a quasi-'
linearization procedure (referred to as a Taylor series method), and a
relaxation procedure. To illustrate the feasibility of these various
techniques, he applied them to some artificial data. However, because
there were no high-speed digital computers at that time, the general

feeling appeared to be that these methods were not practical (ref. 2).



Frequency response methods and equations of motion methods were
used almost exclusively for analyzing flight data during the next
15 years. The only response curve fitting méthod used to any extent was
the analog matching technique. In this technique, the equations of
motion for an airplane are programmed on an analog computer and the
unknown parameters are adjusted manually until the model response agrees
with the flight measurements (ref. 14). The idea of using the digital
computer to implement the powerful techniques pioneered by Shinbrot and
Greenberg for systematically adjusting the parameters was not investi-
gated until around 1966. At this time Bellman independently formulated
a response curve fitting method with emphasis on digital computer
implementation (ref. iS). In 1968, Cornell Aeronautical Laboratories
applied this technique to some preliminary flight data (ref. 16) and in
1969, Lawrence Taylor of the Flight Research Center independently applied
a similar method to analyze routine flight records (ref. 17). Taylor
also presented some comparisons -between parameter estimates obtained
using the response curve fitting method (referred to as an approximated
Newton Raphson Procedure) and the more conventional equations of motion
methods. The results clearly indicated that the response curve fitting
method improved parameter estimates and that with the digital computer
these methods are indeed practical.

Parallel developments in identifying parameters have occurred in
fields other than the field of aviation. The method of maximum likeli-
hood estimation is one approach which has achieved wide acclaim in the
fields of econometrics and statistics. Cramer has stated "From a theo-
retical point of view, the most important general method of estimation so

far known is the method of maximum likelihood" (ref. 18). The response



curve fitting methods developed within the field of aviation can be
considered as maximum likelihood estimates if it is assumed that the
noise in the measurements is gaussian énd white, and that there are no
unmeasured disturbing forces. If there are unmeasured random disturbing
forces in the system, the response curve fitting methods must be modified
slightly in order to obtain maximum likelihood estimates. The basic idea
is that instead of modeling the unknown system by its equations of motion,
it should be modeled by its optimal filter (refs. 19, 20). This idea

has not yet been applied to the analysis of flight data, but may provide
an improvement over the conventional response curve fitting methods if
the unmeasured disturbances are substantial.

Several idéntification procedures are surveyed in greater detail in
Chapter 2. The different techniques are illustrated by using the longi-
tudinal equations of motion for a conventional aircraft as an example.
The purpose of this chapter is to illustrate the differences between the
equations of motion methods and the response curve fitting methods. The
material in Chapter 2 forms the foundation on which the material in this
thesis is developed.

1.2 A NEW COMBINED IDENTIFICATION ALGORITHM

From the previous discussion, it is evident that response curve
fitting methods are usually superior to the equations of motion methods
for estimating the coefficients in the equations of motion for an air-
plane. Nevertheless, equations of motion methods are useful in obtaining
initial estimates of the unknown parameters which can then be used to
start a response curve fitting algorithm. This two step procedure has
been used successfully in certain applications (refs. 7, 9, 16) but has

required two separate estimation algorithms. Taylor, on the other hand,



incorporated a slight modification in a quasi—linearization response
curve fitting algorithm which eliminated the necessity of using a sepa-
rate procedure to obtain an initial estimate of the unknown parameters
(ref. 17). This elimination simplified the total estimation problem and
made the procedure more adaptable for the routine analysis of flight
data.

Taylor showed satisfactory results for one application where
measurements of all the output states were available. This thesis
extends bis procedure to the multivariable case where there may be fewer
measurements than state variables in the system model. This technique
uses an equations of motion procedure, which is similar to a linear
observer, to obtain an'initial estimate of the parameters, then switches
to a quasi-linearization response curve fitting method. This particular
equations of motion method caﬁ be applied to a general multi-input,
multioutput, constant coefficient, linear system whereas, previously,
equations of motion methods’wére generalized only to the single input,
single-output system. In addition, the mathematical structure of this
equations of motion method is nearly idehtical to the mathematical struc-
ture of the quasi-linearization implementation of the response curve
fitting procedure. Because of this similarity, both proéedures can be
used in the same computational structure. This process will be referred
to as the combined algorithm and is developed in Chapter IV. Some of
this material has appeared in reference 21.

In Chapter VI, the combined algorithm is applied to the identifica-
tion of the linearized longitudinal equations of motion of an airplane.
Both simulated and flight data are used. Both single and multioutput

examples are included. The effect of integration algorithms on the



identification is illustrated. The effects of initial conditions and
biases in the parameter identification are also illustrated. The param-
eters in a nonlinear set of differential equations representing the
longitudinal response of a VIOL aircraft are estimated from simulated
data. This latter problem was posed by personnel at Cornell Aeronautical
Laboratory and was discussed at the 1970 JACC in the special session
entitled, "Parameter Identification with Application to Aircraft

Modeling" (refs. 22, 23).

1.3 IDENTIFIABILITY

Given a mathematical model it is usually not obvious whether or not
the unknown parameters in the model are identifiable from input and
response measurements.

There are two different problems in establishing the identifiability
of the parameters. The first problem is to determine if the coefficients
in the system transfer functions are idéntifiable after all cancelling
poles and zeros have been éliminated. This problem is often referred to
as the identifiability of the system's external description and depends
on the type of test signal used in the identification. For example, if
the input to a single-output, constant-coefficient, linegr system is a
single sinusoidal oscillation and if the initial conditions allow no
transients, then the input and output can be realized by a first-order
system regardless of the actual system dynamics. The importance of this
problem in identifying aircraft parameters was recognized in 1947 - 1953
and a substantial amount of research was conducted in defining good
input test signals. The results of these efforts were well summarized

by Milliken in the following statement (ref. 2): "It would appear that

an optimum input in a given case is that which best excites the frequency

10



range of interest, and hence its harmonic content (the input signal)
should be examined before the test to insure that it is suitable."
Although this type of evaluation has been useful and is still the primary
test used to define a good input signal, it is a qualitative procedure
and does not define an optimum test signal. It would be interesting and
perhaps useful to define a more quantitative procedure for designing
input test signals, but this problem is not investigated here.

The second problem is to determine the identifiability of the
coefficierts or stability derivatives in the equations of motion for the
system. This is referred to as the identifiability of an internal
description of the system. Greenberg (ref. 7) pointed out that there are
basic limitations in the determination of the stability derivatives in a
particular set of differential equations as compared to the determina-
tion of the transfer function coefficients. In particular, he studied
the fundamental mathematical‘limitations on the number of derivatives
that can be isolated from flight records in the longitudinal case.

Although the identifiability of the system's external description
implies the identifiability of the transfer function coefficients, these
coefficients can be expressed in terms of a more fundamen@al set (with
the trivial exception of the single-input, single-output system) called
canonical parameters. These parameters can be used in a set of differ—
ential equations, called canonical equations, which relate the sSystem's
input to its response. The canonical equations can be obtained by linear
transformations on the equations of motion for the vehicle. If the
external description of a vehicle is identifiable, the parameters in the
canonical equations are identifiable. It is therefore often convenient

to put the equations into a canonical form. The canonical parameters are

11



related to the stability derivatives and if the stability derivatives
are identifiable, they can be computed as a function of the canonical
parameters. Although there are many éanonical forms, the parameters in
many of them are not located in the matrices so that they can be
identified directly by the combined algorithm (refs. 24, 25, 26).
In this report a canonical form for multioutput systems is

resented which is analogous to a canonical form developed by Luenberger
for multi-input systems (ref. 24). The final structure of the canonical
form presented here is more defined than the one in reference 24, and the
parame:ers can be uniquely identified from measurements of the system
input and its response. In addition, the parameters are located so that
they can be identified directly by the combined algorithm. This canon-
ical form is useful in illustrating the generality of the combined
algorithm and is presented in Chapter III, before the algorithm is
developed.

1.4 COMPUTATIONAL METHODS-

If response curve fitting methods are implemented by gradient
algorithms, it is necessary to compute the system's sensitivity func-
tions. These functions are the first-order variations of the system
state due to unit perturbations in the unknown parameters. Each sensi-
tivity function can generally be computed by the numerical solution of a
set of differential equations of order equal to that of the system.
Astrom has shown that the computations required to obtain these sensi-
tivities can be reduced for the time invariant, linear, single input,
single output, discrete problem (ref. 20). Astrom's results provided the
motivation to investigate the possibility of reducing the computations
for the time invariant, linear, multi-input, multioutput, continuous

problem.

12



Wilkie and Perkins (ref. 27) also investigated this problem, but
the method developed here requires the solution of p fewer nth order
differential equations than their method (where p 1is the number of
independent inputs to the system, and n is the system order).

It is shown in Chapter V that if the system is cyclic,1 the
sensitivity functions (for the system parameters and initial conditions)
and the system response can be obtained by linear combinations of the
solutions to (p + 2) nth order differential equations. Gopinath and
Lange (ref. 28) have shown that if a system is not cyclic, it contains
two or more identical and completely uncoupled subsystems imbedded in
the original system. This is also manifest in the Jordan form for the
state coefficient mafrix of a noncyclic system. The technique presented
can therefore be applied to each subsystem to obtain sensitivity func-
tions for the noncyclic case. Because many of the sensitivity functions
will be the same for the two independent subsystems, fewer than (p + 2)
nth order equations may be required in the noncyclic case. Some sugges-
tions are also made in Chapter V for simplifying the computation of the
matrix of the integrated squares of the sensitivity functions. This
matrix is used in the method of quasi-linearization and in the combined

algorithm.

1A system with state coefficient matrix F is cyclic if there is a
- ! 1
vector . so that the n vectors [Fn A : Z] are linearly

independent.
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IT A SURVEY OF TECHNIQUES FOR ESTIMATING SYSTEM

PARAMETERS FROM INPUT-OUTPUT DATA

2.1 EQUATIONS OF MOTION METHODS

2.1.1 Formulation

There are several different equations of motion methods but their
main features are illustrated by the following two examples. A general
discussion will then be presented.

Example 2.1 The Derivative Method (Refs. 7, 8)

Given measurements of the attitude rate, angle of attack, the
derivafives of the attitude rate and angle of attack (these can be
obtained indirectly from accelerometers), and the elevator deflection,
consider the identification of the parameters in the short-period
equations of motion for a conventional airplane.

The equations of motion are:

Plunge equation: mugd + (Lo + T)a - mugq = -LﬁeSe
(2.1)
Pitch equation: ~M&& - Mgo + Iyé - M

C[q = Mseﬁe

If o is eliminated from the second equation, (2.1) can be rewritten:

] [ -aeD (] [ lee
o —— 1 o
mug mug
= + = <Se (2.2)
e My (Ly*T) Mg+ . Mso  Malsg
L LI}’ Iymug Iy JL ny muOIy_‘

Since measurements of all the system variables and their derivatives are
available, they can be used in equation (2.2) at discrete times, t;, to
give a set of algebraic equations that are linear in the five unknown

parameters;

14



-(L,*T)
mug
My Mg (Ly+T)
Iy muply
a(ti)-q(ty) a(ti) 0 0 &eltj) 0 .
= I 2 (2'3)
. 4
q(ti) 0 a(ti) q(ty) 0 Se(ty)
_L(S
e
mug

M(ge MgLs e
LIy muon

i

If the first equation is used at two different times and the third at
three differeﬁt times, we will have five equations which, if independent,
can be solved for the unknown parameters.

Typically, there will be more than five equations available if all
the measurements are used. Because of modeling errors and uncertainty
in the measurements, a solution to this enlarged set of equations will
probably not exist. A metho& often used to define an estimate of the
parameters is to choose them so that they minimize a weighted sum of the
squared differences between the two sides of the equations. If

equation (2.3) is written succinctly as

y(t) = Aty + e(ti) - (2.4)

where vy is the vector of unknown parameters and e(tj) is the error in
these equations due to the uncertainty in the modeling or measurements,

then an estimate of vy, ¥, is that vy which minimizes the function

k
J = ZE: [y (t3) - ACED)YI Wy (ts) - A(ti)v] (2.5)

i=1
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where W 1is a positive definite matrix used to express the relative
confidence in the different measurements. To compute 7y differentiate
J with respect to the unknown parameters, set the resulting equations
equal to zero and solve for y. This gives the well-known solution

K Tk

Y = Z AT (t;)WA(t;) Z AT (t5)wy (t5) (2.6)
i=1 i=1

In many applications measurements of some of the variables or
derivatives of the variables are not available. If a variable but not
its derivative is measured, it is tempting to differentiate the measured
variable in order to use a procedure similar to that discussed in
example 2.1. However, the differentiation of measured data introduces
additional uncertainty so that this technique is usually inaccurate.

The integral transform methods eliminate the difficulty.

Example 2.2 The Laplace Transform Method (Refs. 7, 8)

Consider the previous eiample with the exception that only the
attitude rate and elevator deflection are measured.

The differential equation that relétes the attitude rate to the

elevator deflection is given by eliminating o from 2.1:

- Mq + M i (L, + T) 7. _ (Ly + T) @9_+ yﬁ
4 Iy mu, ! mu,, Iy Iy 1

Mse MgLse - Mse (L + T) MuLse
T, " ) %e * |1 mu " ot | Se (2.7)
Y oty Yy 0 0%y

and the Laplace transform is given by?

27ero initial conditions have been assumed in this example. If the
initial conditions are not zero, they could be included in equation (2.8)

and treated as additional unknown parameters.
16



. L T L
s2q(s) -’[Mq+M°‘- o * )]sq(s) -[(“+E¥1+¥ﬁ]q(s)

Iy mug mug y y
= e Malde s8.(s) + We (o * 1 - Yo §.(s) (2.8)
Iy muon € Iy mu, muoIy €

The Laplace transform of the measurements q and §g can be computed

numerically for discrete values of s,

© . tf ..
f e Sitq(tyar ~ f e Sitq(t)dt
(6] (o]

q(si)

| *® . tfr ..
Se(sy) = f e'sltse(t)dt% f e s1t<s(_3(1:)dt
[o]

]

and used in equation (2.8) to obtain a set of algebraic equations that

are linear in the unknown coefficients,

| TM_#M; (L +T)
T mug

2
ssa(si) = [s1a(s1) alsi) sife(si) Se(si))] (2.9)
M M.Lg
e _a7e
Iy muoIy
M
Msg (LotT) Mylse

LIY mig _muon

Since s is generally a complex number, each value of s results in two

equations. If four independent equations can be obtained by using

different values of s, they can be solved for the unknown coefficients.

17



As in example 2.1, more than four equations can be obtained by using
additional values of s 1in (2.9). An estimate of the parameters can
then be defined by a weighted least squares procedure identical to that
discussed below example 2.1. The argument in equations (2.5) and (2.6)
would be sj instead of tj.

The general formulation of the equations of motion method is now
evident. A set of equations that describe the dynamic response of the
system are hypothesized. These equations provide relationships among
the system variables, their derivatives, and the system parameters.

They are multiplied by a set of functions, called method functions, and
are integrated over a time interval. In the derivative method, the
method functions are delayed impulses, §(t - tj). In the Laplace trans-
form method, the method functions are the exponential functions, e—sit.
Regardless of the type of method function, this procedure results in an
arbitrarily large set of algebraic equations that can be solved for the
unknown parameters. The par;iéular set of method functions used
determines the specific equations of motion method.

These ideas have been extended to noﬁlinear systems (ref. 8) and to
time varying systems (refs. 11, 29). It is shown in appendix B that

these ideas can also be used to design observers of reduced order.

2.1.2 Effects of Noise

A weighted least squares estimate for the parameters was introduced
in the above discussion in order to estimate the parameters in the
presence of uncertainty or noise. This technique works best when the
errors, €, in equations (2.4) are not dependent on the parameters, vy.
(Errors in the determination of y would be of this type.) In the

equations of motion method, A 1is also composed of measurements and is

18



therefore subject to uncertainty. This uncertainty causes the error, e,
in equation (2.4) to depend on vy. This dependence causes bias in the
parameter estimates (i.e., the expected value of the error in the param-
eter estimates is not zero) even though the uncertainty may be caused by
system noise with zero mean (ref. 4). This idea is illustrated by the
following example. The idea will then be generalized.

Example 2.3 Effect of Noise on an Equations of Motion Estimate

Consider a system described by
X +ax = u
Let us assume that we have perfect measurements of u and x but that
the measurement of  X contains a small zero mean random bias which is
not accounted for. Denote these measurements by the subscript m.

o = &
E{nl}

fl
(]

Xp = X +m
2 2
E{n7}

1}
Q

= u

If the derivative method is used, an estimate for the parameter a is
obtained by solving the algebraic equation
X +a(x +n;) =u

which implies

A u - X u - X 1

= = g { ———0o
X+ x(1+ﬂ) 1+ 2L
X X

If we assume that mn; << x, the right side of this equation can be

expanded in a power series

and the expected value of a can be approximated by
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. n?
E{a} = a + E -
X
which implies that
2
. n
E{a - a} = E{—%} #0

X

and the estimate is said to be biased.
Let us define A( ) and y( ) in equation (2.4) for a discrete value
of the argument by Aj and yi, respectively. The components of the

computed A; and yi can be broken into two parts

iz i i (2.10)
yt=yp v,

where Ati and y% are defined as those portions of Aj and yi for
which the equality (2.4) holds with € equal to zero,
i
Yy = Ay (2.11)

If these definitions are used, then ? ‘is the solution of

K A K
Z[Ati + Aei]Tw [ae; + AEi] Y= Zl-f*ti * Aﬁi]TW(Yi * yi) (2.12)
i=1 : i=1 -

and vy is the solution of

k

k

z : T B E : T i ,
AtiWAti Y = AtiWyt (2.13)

i=1

i=1

Set y -equal to Y + (v - ¥) in equation (2.13) and subtract equa-

tion (2.13) from (2.12) in order to obtain
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k k
T T T ~ T ~
E [AtiWASi + Ag WA, + AEiWAei]y - E [AtiWAti] [y - ¥
i=1 i=1
k
_ Z T T, i T, i
= [AeiWyti + AEiWyE + Atiwye] (2.14)
i=1

The result implies that the error in the parameter estimates is given by

-1
k
E : 2 : T i T, i T . i
Gye = [y - Y] Ag WAt1 - (AEiWyt + AeiWy8 + AtiWy€>
i=1

k
T T T .
+ E <AtiWA€i + A WAg, + AEiWA€i>y (2.15)

i=1
The expected error is given by

o« k

E{Sy,} = Z Agag| |- Z ElAgiWyi} . Z E:AZiWAEi}? (2.16)
i=1 i=1
where it has béen assumed that yi and Acy -are zero mean and independent
of Ati and yi. »It has also been assumed that Ati and y% are deter-
ministic quantities (although unknown). If there is any additive noise
in the system, this expression is usually not equal to zero; thereforé
" the parameter estimates are biased.

Comment: One well-known exception is the constant coefficient,
linear, discrete problem with no numerator dynamics; with zero mean,
independent, and gaussian process noise; and with no measurement noise.
If the parameters are estimated by a procedure similar to the derivative
method, the equivalent A€i will be zero. This implies that the
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expected error in the parameter estimates is zero. These estimates are
unbiased because the state at any instant of time is not dependent on
the noise at that instant of time. Thié same idea can be extended to the
analogous continuous system, if the integration algorithm is defined so
that the state is not correlated with the noise at any instant of time.

2.2 RESPONSE CURVE FITTING METHODS

2.2.1 Formulation

Let us consider systems that are modeled by equations of the form

2=f&, u, B, t) R(0) = ﬁo}
R ) . (2.17)
y = h(x, u, B8, t)

where

X an n x 1 state vector

u a px 1 input vector

é a vector of unknown parameters in f and h

io a vector of initial conditions, some of which may be unknown

y an m x 1 model response vector

The response curve fitting methods are formulated by adjusting the
parameters in B and the unknown initial conditions until the model
response vector, y, agrees, in some sense, with the measured response, y.
The criterion often used to adjust the unknown parameters in the model

is to minimize the function

J =

D] b

k
3 [yt - s Wyt - $E] (2.18)
i=1

in the discrete case, or the function

tf X
J =%‘ f [y (£) - $()1 W[y (t) - y(t)1dt (2.19)

0
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in the continuous case. The positive definite weighting matrix W is
used to express the relative confidence in the measurements.

Because the model response is generally a nonlinear function of the
unknown parameters, equation (2.18) or (2.19) must be minimized by an
iterative procedure. In this report, the method of quasi-linearization
is used. An interesting relationship between the first-order gradient
method, quasi-linearization, and the second-order Newton-Raphson method
is illustrated in appendix A for this particular problem.

The basic idea behind the method of quasi-linearization is that the
model response y, which minimizes equation (2.18) or (2.19), can be
approximated by a noﬁinal response based on an initial estimate of the
unknown parameters, plus a linearized correction about this nominal

response (refs. 13, 15). This approximation is given by

YR Iy YN Oy (2.20)
where
5(N = f(XN, u, By t) XN(O) = XN,
: (2.21)
yN = h(xN, u, BN’ t)
and
3
5% = -gi 5x + % 58 6x(0) = 6xo
X X=XN X=XN
B=8B B=8
N N > (2.22)
(Sy = -g—?(— 8x %}é' S8
X=XN X=XN )
B=By B=BN

The subscript, N, refers to the initial estimate of the system parameters

and the corresponding nominal response; §A is the linearized
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approximation of y based on the initial estimate of the unknown
parameters. Within this approximation &y is a linear function of the
perturbations in the parameter B and unknown initial conditions. This
is evident when 6y 1is expressed in terms of the system transition

matrix, &(t, 7).

8B + — o(t, 0)6x,
X=XN X=XN
N B=By B=By B=8y

If v 1is a single vector containing both the unknown parameters in

g and the unknown initial conditions, then &y can be expressed as
Sy = A(t)68y (2.23)

The time histories in the matrix A(t) are the numerical solutions of

the differential equations

. =2f . 4 O Xv. (0) = 950
Yi  9x Xz Yy U 3y X=Xy Yi 94
Y=Yy Y=Yy
yo = 3h <. 4 2h
vi Tl Mty
i X x=xy * Byi X=Xy
Y=Yy Y=Yy

where Y5 is the ith parameter in the vector vy and in(t) is the ith
column of A(t).

if ?A is used in (2.18) or (2.19) in place of vy, the problem is
reduced to the minimization of a quadratic form similar to that discussed

in example 2.1. The estimate for &y is given by
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-1 X

k
8y = Z AT(ti)WA(ti) ZAT(ti)w(y(ti) - yN(ti)) (2.24)
i=1

i=l

or

(o)

-1

R tf tf

8y = [f ATwa dt:] [ f ATw(y - yN)dt]
0

respectively. A new estimate of the parameters is obtained by correcting
the initial éstimates with the estimate of the error, §y. In this way
an’'iterative ?rocedure is established for minimizing the function J.
Kalaba (ref. 30) investigated various aspects of the convergence
properties of this algorithm.

This procedure is applied to a nonlinear problem in Chapter VI.

Comment: Prior estimates of the unknown parameters can be incor-
porated in the identification by including this information in the cost

function,

1

A . te )
I3 GG ) ¢ 3 j; v - Ny - P

N =

where A 1is a weighting which expresses the relative confidence in
these prior’ estimates and Yp is the prior estimate. The estimate for

§y 1is given by

tf -1 tf T
&y = [A + f ATwA dt] Alyp - vN) + f A'W(y - yydt
0]

0

2.2.2 Effects of Noise (Maximum Likelihood Estimation)

The measured response can be considered as the summation of two

components,

Yy =Yt t+ ¢ (2.25)
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where y; 1is the system response caused by the known input u(t) and
initial conditions, and e(t) is the difference between the measured
response and y,. If the response curve fitting method has converged to
a reasonably good estimate of the parameters, yy, the difference between

the model response yy and y; can be approximated by the linearized

equations,

Ye - YN A(t) x=xy Sy (2.26)
Y=YN

If equations (2.25) and (2.26) are used in (2.24), the estimate for &y

59 =[f
{f

is givenvby

-1
t t
£ f
ATwa dt] [ f ATw(e + Asy) dt]
[0
tf -1 te
ATwa -dt f ATwe dt| + sy (2.27)

0
(o o
which implies that the error in the final parameter estimate is

)

-1
tf tf
8y, = 8y - &y = [ ATwa dtJ [f ATwe dt:l (2.28)
0

0

This linearized approximation is equivalent to assuming that the gradient
of the model response, A(t), is not affected by the errors in the param-
eter estimates and is therefore deterministic. The expected value of

GYE is given by

-1
tf te
E{sy,} = [f ATwa dt] [f ATwE{e}dt] (2.29)
(o]

0
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which equals zero if e(t) is zero mean. This result does not depend on

e(t) being white. Therefore, we can conclude that response curve fitting
methods give unbiased estimates, to first order, whether there is process
noise in the system or measurement noise. The above results do not, how-
ever, apply if there is noise in the measurements of the input wu. This

type of noise must be treated differently than process noise.

The variance of the errors in the parameter estimates is given by

o} o 70

-1 ~1
_ t teptf te
By Syi}= [f £ \Tia dt] D' f AT ()WE{e (t) T (1) IWA(T)dt dr][f ATwa dt]
¢ I
' (2.30)

An estimate of the vériance can be computed since [J;tf ATwA dé] and
A(t) are computed during the identification and the E{e(t)eT(r)} can be
estimated for ergodic processes by taking the autocorrelation of the
residuals (the difference between the model response and the measure-
ments).. Under the special condition that the noise, £(t), is white and

the weighting matrix is chosen so that
Ele()eT (1)} = W ls(t - 1) (2.31)

equation (2.31) reduces to
tf 77!
E{6vSvl} = [J. ATwa d%] (2.32)
o
The results for the discrete problem are analogous and can be
obtained by replacing the integrals in equations (2.27) to (2.32) by
summations.

Maximum Likelihood Estimation: A maximum likelihood estimate for

the parameters may be obtained if the probability density function for

the measured response is known as a function of the unknown parameters.
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If the probability density function is evaluated at the specific set of
measurements, it becomes a function only of the unknown parameters and
is called the likelihood function. The maximum likelihood estimate is
the set of parameters that maximizes the likelihood function. The usual
procedure for defining the likelihood function is to whiten the measured
response by a causal and invertible transformation.

Example 2.4 Maximum Likelihood Estimation in the Presence of

Purely Random Gaussian Measurement Noise

Consider a system described by the equations

x = f(x,u,B,t) x(0) = xq
, (2.33)
y = h(x,u,B,t) + e(t)
Let y(t) be sampled at discrete times,
y(ti) = h(x,u,B,tj) + e(ti) (2.34)

and assume that the joint probability density function of the sequence
e(t;), i =1, 2, . . . is gaussian with correlation
T =
E{e(ti)e [tJ)} = Raij (2.35)

If this system is modeled by equation (2.17) with B = B and Xo = Xg»
then the difference between y and y is equal to e(t). The difference

between y and y will be denoted by v(t),
y(ti) = y(ti) = v(tj) (2.36)

where v(t) is a function of vy. If we evaluate the probability density
function of g(tj) using the sequence v(t;), the probability density
function becomes a function of ¥ and is a likelihood function (L.F.)

for the system,

28



oo ——

k
-(1/2) v e TR (e
1i=1

L.F. =|e i (2m) (m/2) g (K/2) (2.37)

.y —

Maximizing this function is equivalent to minimizing its logarithm or,
in other words, the maximum likelihood estimate is obtained by the
minimization of the function
1 < -1
J = 5) [k log|R] + éga v(t;) TR v(ti)] (2.38)

with respeét to the unknown parameters in the constraint equations where
v(ty) = y(ti) - y(t;) (2.39)

and y(ti) is given by equation (2.17). If R is known, the procedure
is identical to the response curve fitting method. If R is unknown,

it can be estimated iteratively by computing the mean square of the

residuals.

Example 2.5 Maximum Likelihood Estimation in the Presence of Purely

Random Gaussian Process Noise and Measurement Noise

(Ref. 19)

Let us consider a system described on the equations

X

Fx + Gu + v x(0) = xo
} (2.40)

y = Hx +w

where v and w are zero mean, white noise, gaussian processes. Let

y(t) be sampled at discrete times,
y(ti) = Hx(t;) + w(tj) (2.41)
and let the correlation of w(tj) be

E{w(ti)wT(tj)} = RS; (2.42)

29



Let the correlation of v(t) be
E{v(t)vI(1)} = Q8(t - 1) (2.43)

The optimal filter for this system is given by (refs. 31 and 32):

X(t/t;) =FR(t/t1) +Gu(t) R(t3/t5) =% (t4/t5_ ) +Ke ()
x(0/-1) = x4
9(ti/tj_;1) = Hi(ti/ti_l)
Kj =P(ti/ti_l)HT[HP(ti/ti_I)HT+R]—1 r

P(t/ty) = FP(t/ti) +P(t/t{)FT +GQG' P(ti/ti) = [I - K{HIP(t5/ti_1)
P(0/-1) = P,

e(ti) =y(ty) -y (ti/ti-1)
(2.44)

It has been shown that the residuals, e(tj), for the filter are gaussian
and white (ref. 32). Therefore the probability density function for the
residuals or innovations can be used to define a likelihood function.

Under the special assumption that the innovations are stationary,

the equations for the optimal filter are simply

R(t/t;) =FR(t/t3) +Gu(t)  R(t;/ti) =XK(ti/t ;) +Ke(ti)

x(0/-1) =%, (2.45)

y(ti/ti_q) =HR(ti/ti_q)
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and the parameters in K are constant. If we use these equations to
model the unknown system, and define the difference between y and y as
v, v(ti) = y(ti) - ¥(tij/t;_y), then the likelihood function for the sys-
tem can be obtained by evaluating the probability density function of the
innovations at the sequence 6f residuals, v(tj). The v(tj) are a
function of the unknown system parameters as well as the filter gains,

K, and the maximum likelihood estimate is obtained by minimizing the

quantity
k

J = (%) k log|B| + 2{: vt TB v (ty) (2.46)
i=1
with respect to tﬁe unknown parameters in the constraint equations,
(2.45). The matrix B in equation (2.46) is the covariance of the
residuals.
The parameter estimates obtained by this procedure are consistent
and asymptotically efficient. - As the amount of data increases, the

statistics of the errors in the parameter estimates approach

E{v.} = 0 (2.47)
k o .

E{Gyeéyz} = ZAT(ti)B_lA(ti) (2.48)
i=1 '

where A(ti) is the gradient of the model response with respect to the
unknown parameters. For a rigorous discussion on these properties, the

reader should see references 20, 33, and 34.
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The above results do not apply if there is noise in the measurements
of the input u. This type of noise is not the same as process noise and
its presence will cause a bias in the parameter estimates if the above

procedure is used.
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IIT STATIONARY LINEAR SYSTEMS

3.1 BACKGROUND

For many dynamic systems the relationship between input u, and
output y is well described by a set of first-order constant-coefficient

linear differential equations of the form?

it

z = Az + Bu z=nx1l,u=px1

(3.1)

y = Cz y=mx1

A particular set of equations that relates the system input to its output
with desired accuracy is called a realization for the system. A minimal
realizatioﬁ is a realization of minimal order. Kalman has shown that a
minimal realization is both controllable and observable (ref. 35). This
property will be used extensively in the following discussion.

The minimal realization depends on the specific input to the system
as well as on the structure of the system. For example, if the system
(eq. (3.1)) is excited by akéingle sine wave, then the minimal realiza-
tion for the steady-state response would be a first-order system. In
another example, certain modes of a system may not be noticeably excited
by a given input. The minimal realization would include only those
modes that were excited and observed.

i

Even if we restrict our attention to minimal realizations, there are

many choices of parameters in the matrices A, B, and C that give the

3When these equations are used, y(t) does not respond instantaneously
to a step input in wu(t). It is sometimes convenient to approximate a
physical process by one that does respond instantaneously to a step
change in the input. For example, the response of an accelerometer is
often so fast that the sensor dynamics are negligible. The ideas

presented here can be extended to include these situations.
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same output for a given input. This is easily shown by introducing any
nonsingular transformation of the state véctor,
x = Tz (3.2)

The input and output of the system can then be related by the equations

x = Fx + Gu
(3.3)
y = Hx
where
F = TAT '
G = TB (3.4)
H=cr!

The system (3.3) ié said to be equivalent to (3.1). Note that the
matrices F, G, and H contain n(n + m + p) parameters. Although the
choice of F, G, and H that can be used in equations (3.3) to relate
the system input to the system output is not unique, the transfer func-
tions between u(s) and y(s) are unique (where u(s) and y(s) are the
Laplace transforms of u(t) and y(t), respectively). If zero initial

conditions are assumed, the transfer functions are given by
y(s) = C[Is - A] 'Bu(s) = H[Is - F] ‘cu(s) (3.5)

There are mp bindividual transfer functions in equation (3.5) which
would seem to imply that there might be as many as nmp numerator coef-
ficients and n denominator coefficients. Although uniquely specified by
the input-output measurements, all these coefficients are not independent.
The computations for the transfer functions associated with different
inputs are identical except for n parameters in the column of the B

matrix associated with the different inputs. Consequently, the input

and output can be related by a maximum of n(m + p) independent
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parameters (i.e., n(m + 1) for the first input and n additional
parameters for each additional input). Since there are n(m + p + n)
parameters in F, G, and H, the above argument suggests that n? of
these parameters might be specified and the remaining free parameters
used to relate the system input to the output. The canonicai form
presented in this chapter contains a maximum of n(m + p) parameters all
of which are.uniquely defined by the input-output behavior of the system.
We will illustrate these ideas for a single-input single-output system
prior to dereloping the canonical form for the general multivariable
system.

Example 3.1 Sihgle—Input, Single-Output, Second-Order System

Consider the single-input, single-output, second-order system given

by
. ' ‘
X1 fin fi20lx1 811 x1 (0)
. = + u =
X2 fa1r  fopflx2)- | 89 X2 (0)
\ (3.6)
X1
y = [hll hzﬂ
X2
/
The Laplace transform of equation (3.6) is

u(s) ~ s2 + ¢ys + ¢,
where
di = gy hir + 8,0y,
do = gll['hllfzz * h12f21] * gzl['hIZfll * hllflz]

[‘fll - fzz]

i

€1

o [fzzfll - flzle]
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Since y(s) is completely specified by wu(s) and the four coefficients
di, dg, c1, and cg, it is clear that thé eight parameters in F, G, and
H are not uniquely defined. In fact, four of the parameters in F, G,
and H can be determined in terms of the other four. By choosing four
parameters we constrain the structure of F, G, and H so that the four
remaining parameters are uniquely defined by the input and output rela-
tionships. One way of constraining the structure of F, G, and H is’to
set hy; =1, hjp, = 0, £f150 = 1, and f5,, = 0. The four remaining param-

eters in F, G, and H are then uniquely defined by the relationships

dy =g, dop =gy, c1=-fy,  cp = ~fy (3.8)

This particular choice of F, G, and H corresponds to a well-known
canonical form for single-output systems. Other canonical forms can be
used to represent this system but equation (3.8) is particularly well
suited to the identificatien algorithm presented in this study.

3.2 A CANONICAL FORM FOR MULTIOUTPUT SYSTEMS

To the author's knowledge, none of the multivariable canonical forms
currently available define a set of uniquely identifiable parameters and
at the same time are suitable for use with the identification algorithm
presented here. A canonical form which meets both of these criteria is
presented in this section. It is analogous to a canonical form developed
by Luenberger for multi-input systems.

In order to write our canonical form for the unknown system it is
necessary to determine the first n linearly indepehdent rows of the
observability matrix for the system. If the system is described by a set
of equations of the form (3.1), the observability matrix for the system

is given by the matrix
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r— C I
CA ‘
Op = | ° (3.9)
cAn—l
. -

If (3.1) is a minimal realization having order n, then there are n
independent rows in Op. Since the parameters in C and A are not
known, however, it is not always clear how to determine the first n
linearly independent rows in this matrix. If this information is not
known, all:possibilities should be considered. This procedure introduces
additional uncertainty into the identification, and the combination of
rows, which results in a model giving the "best fit" of the data,
should be selected as the estimate of the system. In many applications,
particularly in the identification of the parameters in the linearized
equations of motion for an aircraft, the linear independence of the rows
in the matrix Op can be determined with a high degree of certainty on
the basis of the dynamics of the problem without knowing the actual
numerical values of the parameters. In the remainder of this report
we will assume that this information, which will be referred to as the
structure of the system, is known.

If the structure of the system is known, then the canonical form for

the system is given by

1l

X = Fx + Gu
(3.10)
Hx

Y

where F and H are given in figure 1. There are no simplifications in
the control coefficient matrix G and therefore this matrix has not

been written out in detail. The numbers Pys Pps +-+ +s Pp in
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Figure 1.- General canonical structure.
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figure 1 are equal to the number of rows in the first n linear
independent rows of the observability matrix (3.9), that involve a
multiplication by the first, second, . . ., and mth rows, respectively,
of the matrix C. The symbol I in figure 1 is the identity matrix,
the blank areas are all zeros, and the x's indicate nonzero elements.
If the unknown system is modeled by equation (3.10) where F and H
are given in figure 1, the undefined parameters denoted by x are
still not uniquely identifiable. It is shown in assertions 3.1 and 3.2
at the end ¢f this section that some additional parameters in figure 1
can be set equal to zero by the relationships
if p; < pj -k theﬁ

fssek,s; =0 k=0, 1, .. ., py-p; -1 (3.11)

. < . .
if 1 pj, i # j. then

h =0 - (3.12)

j,Si

where fi,j and hi,j are elementé in F and H, respectively, and the

subscript sj; is defined

S. =4 . (3.13)

1-1
1+, p, i=2,3,
=1

\
"If (3.11) and (3.12) are used to set the corresponding parameters in

figure 1, equal to zero, then a maximum of n(m + p) parameters remain
and can be uniquely identified from the measured data. These ideas are

illustrated in the following example.
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Example 3.2 A Fourth-Order System With Two Ouputs

Consider a system, (3.1), where- A 1s a 4 x 4 matrix and C is a

2 x 4 matrix. The observability matrix is
- —

(1)
€(2)

E(I)A

C(Z)A

C(l)AZ

c A2
L.(Z] -
where (1) is the ith row of C. ©Let the system be observable but
assume that the fourth row of 0, C(Z)A, is linearly dependent on C(l)’
C(2)> and c(l)A. The first four linearly independent rows of the

observability matrix are then

‘()
‘@ (3.14)
“wh
JOLS
which implies thét p, = 3 and P, = 1. Since P, <Py - k for k =0,
1, (3.11) implies that Jf:‘l’L+ = fz,u = 0. Expression (3.12) gifes no

additional information about the parameters in H. The canonical form

for the system is therefore given by the equations

X = FX + Gu (3.15)

I

y = Hx

where
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B — e
fll 1 0 0 rgll
£, 0 1 0 g,, 1 0 0 0
F = G = H =
f31 0 0 f34 g31 h21 0 0 1
| fu1 0 0 £y 841 |

In many applications (all that we have considered), it is possible
to order the measurements, y, so that the first n rows of O are
linearly independent. The canonical form for this case is examined in
detail because of its frequency of applicability. If r and q are
defined as the remainder and quotient of n/m, respectively, then
pi =q+1 Vfor i<r,p; =q for i >r, and the canonical form for
F and H is given in figure 2. As in figure 1, the F matrix has been
partitioned into m? submatrices and H has been partitioned into m
submatrices. Expression (3.11) implies that the parameter in the upper
left corner of each submatrix in F having the dimension q + 1 x q 1is
equal to zero and (3.12) implies that the H matrix is reduced to all
1's and 0's except for the last m - r parameters in the first column
of each submatrix having the dimension m x g + 1.

If the state vector is an even multiple of the measurements and if
the first n rows of the observability matrix are linearly independent,
the parameters in the observation matrix H reduce to all zeros and
ones.

Example 3.3 A Fourth-Order System With Two Outputs

Consider the system used in example 3.2, except that the first n

rows of the observability matrix, O,
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€
2

c(l)A

- (3.16)

are linearly .independent. Then q = 2, r = 0, and the input and output

can be related by a realization having the form -

» m -

f1. 1 f13 0 g,

foq 0 fo3 0 851 1 0 0 0
F = G = H =

f31 0 f33 1 g31 0 0 1 0

fu1 0 fy3 O | 841 ]

(3.17)
The transformation that puts a system into its canonical form is
constructed as follows: Arrange the first n linearly independent rows
of the observability matrix (3.9) to form a nonsingular matrix P,

' n
i )

(3.18)

where p; 1is the number of rows in this linearly independent set

involving a multiplication by the ith row of C. Define q(j) as the
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jth column of p~! A Q. The inverse of the canonical transformation

matrix can then be constructed,
. [A(Prl)q(ll), e g A D B _’q(zm)}

(3.19)

where 1; is defined by

i
;=25
j=1

The remainder of this section illustrates that the assertions
concerning the structure of the canonical form are correct.

Assertion 3.1 If a system is transformed according to expres-

sions (3.2) to (3.4) where T™! is constructed as in equation (3.19),
then H will have the form given in figure 1 and if p; < P; then

Proof: The canonical form for the observation matrix is computed

by means of the equation H = el or

H = C[A(pl‘l)q(zl), c o, qt) ) APl (22 q(Zm)]

(3.20)
If the jth row of the matrix C 1is denoted by C(j)’ the elements in

H are computed by the matrix products

k, (23]
h. A 1 .
itk T St (3.21)
where k<p. - 1. If k<p; -1 or (k=p; -1and j<i) then the

1
vector c(j)Ak is orthogonal to q(zi) by the way the q(zi) were
chosen. This is illustrated by the following argument. The vector
ch)Ak is contained in the set of vectors denoted by the rows of the

matrix
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C 7]

CA

CA2

: (3.22)
pj-1
C(I)A

.pi—l
CriyA
L (G)

. i=1 . .
Since the vector c(i)Apl is linearly independent of these rows and
is the 1; row of the matrix P, the vector c(j)Ak can be expressed

as a linear sum of the rows of P, excluding the 7j row,

n
k _ .
c(5)A* = 5.121 95P g s # 13 (3.23)

Taking the inner product of both sides of this equation with q(Zi) we

obtain

n . 11
i 14
C(j)Akq( l) = Zusp(s)q( 1) = stés,zi = 0 (3.24)

S=1 s=1

because s # Zi. If these elements are set equal to zero, H reduces to

the form given in figure 1. If p; < P; then c(j)APi_lq(?i) = §.. by

1]
the way the q(zi) were chosen. This implies that hj =3

,Zi'Pi"'l i:j,.

But 7j - p; + 1 =s; which implies that hj,si =8 5

Assertion 3.2.2 If a system is tranformed according to

equations (3.2) to (3.4) where T_l is constructed as shown in (3.19),
then F will have the form given in figure 1 and if p; < Pj - k then

ij+k,Si =0 for k=20,1, . . ., pJ - Py - 1.

Proof: The canonical form for the state coefficient matrix is

computed by the equation
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-1
F = TAT (3.25)

It is convenient to consider A as a linear transformation, o, from a
vector space U into itself with respect to some basis, e;, es, .

en- The elements in the ith column of A are the components of the
transformed ith basis vector. If a new basis, ei, e;, e e eg, is
generated whose components are given in terms of the original basis by

-1 .
the columns of T °, the new basis vectors are related to each other by

the transformation itself,
1 1 . .
g(ei) = ei_l 1 # Sj, J = 1, 2, [ 11 (3.26)

Because the coluﬁns of the matrix contain the components of the
transformed basis vector, the matrix F takes the form given in
figure 1. The columns, excluding the s; columns, contain all zeros
except for a one on the superdiagonal.

Let us now consider the s; columns of the state coefficient

matrix. Again, using the fact that the columns of the matrix contain

the components of the transformed basis vector, we can write

n ]
3 £5,5,°5 (3.27)

1
oles;) =,
j=1

In terms of the original basis, this implies that

m Pj-!

pi-1_(11)\ _ \Pi,(Z1) _ ZZ pj-1=d
A(AJL q 1) = Kt = fsjad,s;¥ q(3) (3.28)
j:l d=0

Associate with each row vector, c(j)Ad, a number, pj - d, where
j=1,2, ... ., mandd =0, 1, 2, . . .. If there is a j so that
j - d > ;> take the inner products of both sides of equation (3.28)
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with the row vectors, c(k)Ab, which maximize Py - b (i.e., b= 0 and

k is such that Pk = max{pzz 1=1, . .v., m}).

m Pj71 4
Pi (13) _ z : Pi=17¢ (25)
C(k)A q 1/ = Z ij""d,Sic(k)A q J (3.29)
j=1 d=0
Note that because of the way the q(Zj) were chosen and because py > pj,
C(k)APiq(Zi) -0
caaAPiTt ) = o pj - 1-d<p -1 (3.30)
pj-—l—d (1) ,
3 = . -1-4d-= -

In addition, note that Pj - 1 - d cannot be greater than P -1
because of the way the C(k) were chosen. Equation (3.29) therefore
reduces to

0= fg s, (3.31)

This result can be stated as follows:

Result 3.2.1: 1If

B 2 max{p; - d}
j=1,25...,m
d=0,1,..

and if
Px - b = Bpax
then

f =0

sk+b,si

Assume f5j+d’si = 0 for all j and d such that pj - d>8 >p;

for some B where B 1is a real number (if B,y - 1 > p; then
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B =8 - 1 is such a number). Take the inner products of
equation (3.28) with all row vectors of the form c(k)Ab where

pk - b =38,
m Pjl

-+b (Z: p;-1-d+b . .
j=1 d=0

Note that because of the way the q(Zj) were chosen and because
Px > pi+ b,

s+b (1
C(k)Apl-'- q( 1) =0

- Pi-1-d+b (Z;
C(k)APJ '+ q( J) =0 Pj - 1-d+bc< Py - 1 (3.33)
Pj—l_d+b (Z.) —_ - - = -

/

The only remaining terms in equation (3.32) are those for which
Pj - l1-d+b>p - 1. However, if P - 1-d+b> P -1 then
pj -1-d>p-b-1=28-1 which implies that Pj - d > B which

implies by hypothesis that the coefficients of these terms equal zero.

Equation (3.32) therefore reduces to

0 = fsk.!.b,si (3.34)

and we establish the following result:

Result 3.2.2 If ij+d,si = 0 for alli j and d such that

Pj - d > B8 >p; for some B, then f5j+d’5i =0 for all j and d such
that Pj - d =8 >p;. Results 1 and 2 can be used to deduce by induc-
tion the original assertion that fsj+d’si =0 for d=0,1, .. .,

Py - Pi - I.

3.3 IDENTIFIABILITY OF THE PARAMETERS IN THE CANONICAL FORM

If the minimal realization of a linear system is described by a set

of equations of the form given in equations (3.10) through (3.13) and
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figure 1, then the undefined parameters in those equations are uniquely
determined by measurements of the input and output. This assertion is
proven in two parts: First, it is shown that the canonical realization
for a system is unique (i.e., the canonical realizations of any two
equivalent minimal realizations are identical). Second, it is shown
that equations (3.10) through (3.13) and figure 1 are in the canonical
form since the canonical transformation for these equations is the
identity.

3.3.1 Unigueness of the Canonical Realization

Consider two equivalent but different minimal realizations of a

linear system

'Zl = A]_Z]‘ + Blu

(3.35)
Yy = C]_Zl
.Zz = AzZ2 + Bzu
] (3.36)
y = C222

It is shown in reference 27 that under thgse conditions the states of
the two systems are related by a nonsingular transformation
22 = Uzl _ (3.37)

If the relations for equivalent systems presented in equations (3.2)
through (3.4) are used, it is easy to see that the canonical transforma-
tions for these two realizations are related by

T,' = vt} (3.38)
where the subscripts 1 and 2 are used to distinguish between the
canonical transformation of system 1 and system 2, respectively. The

canonical realization of system 2 is related to the canonical

realization of system 1 by
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3
-1 -1 -1.-1
Fz = T2A2T2 = TlU UAIU uT = F]_
Hy = CoTp' = CuU  UT™! = Hy > (3.39)
-1
Gy = TyBy = T1U "UB; = G J

and hence they are equal.

3.3.2 The Canonical Transformation for Equations (3.10) Through (3.13)

is the Identity

It is shown in assertion 3.3.1 at the end of this section that the

columns ple), p(ZZJ, R p(Zm) of the P matrix contain all

zeros except for a one on the main diagonal. This implies that the
1) 1y A
NI ¢ BN

columns of the Q matrix (the inverse of

P) also contain all zeros except for a one on the main diagonal. It is
then easy to see that the resulting canonical transformation T is the

identity. The difficult part of this derivation is to show that the
(Z1)

columns, p , are of the asserted form. To facilitate the proof of

this assertion, we will first prove results 3.3.1 through 3.3.5.

Definition: The element in the ith row and jth column of the

matrix FK will be denoted by fk

'lsj )
Result 3.3.1: If 1< ks<p; -1 then fk = §8; 7. and if

k = Pj then f??zj = f

Proof: If P; = 2 then the parameters in the Zj column of F

i,Sj'

are given by

£i,1.

=8 7._ (see fig. 1)
j 1,ZJ 1

This implies that the parameters in the 7j column of F2 are the

parameters in the (Zj - 1) column of F,

fi,7: =

£: 7..
j 1,ZJ 2+1
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In general, if 1 < k < p. then

J
k
f. =f; 7..
i,7; 1,ZJ k+1
which implies
k
f. = 8: 4 _
1:Zj 1’Zj k k<pj -1
Pj
f. = = f.
1,Zj £; ZJ -Pj+l 1,sj
: < Pjre
Result 3.3.2: If k = Pj SPi - 1 then fsi+d,Zj = 0 for
d=20,1, . . ., Pi - Pj - 1 - e where e = 0.
. p.
Proof: If k = Pj < p; - 1 then by result 3.3.1 fizlj = fi,sj
which implies by assertion 3.2.2 that fpj =0 for d =0,
Si+d,Zj
; pj+e =
1, . . ., pj - Pj - 1. This can be restated as £ J +d, Z = 0 for
d=20,1, . . ., p; - Pj - 1 - e where e = 0.
Result 3.3.3: If fPJ+§Z~ =0 for d=0,1,...,p;-pj-1-e
if 0<gq< Firert
and if 0<q<p; -pj-1- (e + 1), then 53+, 7; =0 for q=20,
1, 2, . . ., p; - pj -1- (e + 1).
Proof
+ +1 + 1 +
e e p.+e
2 : = pj+e J
sl+q, fS i+9, P p, f Si+qg, pfsp,Z * fsi+q+l,Zj
p=1

(see fig. 1)
We will now show that each term on the right is zero. Let us first

consider the first term. Either pj - ¢ >p, or p; - q < If

Pp-

p; -9 > pp then fsi+q,5p = 0 by assertion 3.2.2. If pj —q*ipp

then p; - (pi—pj —1—(e+1))<pp=>pp-pj —-1-e—1»>0=>pp—pj -1-e>0
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bi+e . .
which implies fSJ+d ;. = 0 by hypothesis. The first term on the right
p 7] '

of the equation is therefore equal to zero. The second term is equal to

zero because

. +e
05q=pi-pj-1-(e+1)=0=q+1=p;-pj-1 'ez’fsz‘qﬂ,w -

by hypothesis.

Result 3.3.4: If 0<d =< (pj - pj - 1 - e) then

pijte _
fs:.]+d,Z- =0
i J

Proof: It was shown in result 3.3.2 that this is true for e = O.

Then if p; - pj -1-e20 for e =1, result 3.3.3 can be used to

show that this result is true for e

1. We can therefore proceed by

introduction to establish the above result.

: k
Result 3.3.5: If 1 <k <max[p; - 1, Pj - 1] then fs- 7.7 0
- ir &4
except fgq_% which equals 1.
3777

Proof: Either p; < Py OT Pj > Pj- If p; < Pj> then

1<k s<max[p; - 1, pj -1]=1<ks Pj - 1 which implies by

k _ : =
result 3.3.1 fi,Z. = 5i,Zj-k except if k = P; then
; J
= £. k = P = :

fi,Zj = fl,sj==> fsi’zj 0 except fs;,lj 1 and the argument is
completed. If p; > pj then either 1 < k < Pj - 1 or P; <ksp;-1.
If 1sks Py - 1 then the above reasoning completes the argument. If
P; <ks p; -1 then 0 <k - P; < pj - P; - 1 which implies

0<p;- pj - 1- (k- pj). If (k - pj) is denoted by e then
ij+(k—pj) = fk = 0 by result 3.3.4 and the argument is completed.

si+d, si+d, 15

Assertion 3.3.1 The parameters in the Zj column of the matrix P

are given by
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= 6i,Z' (3.40)
Proof: The parameters in the Zj column of P are computed by

n

m
= h: fk = E hj fk (3.41
pSi+k,Zj i,r I,Zj - 1,89 sd,z. -41)
r=1 d=1 J

where

k < p; - 1 (3.42)
py has to be less than p;, equal to p;, or greater than p;- If
P4 < p;, then hi,sd = 0 by assertion 3.2.1. If pgq = P; then

hi,sd = 044 by‘assertion 3.2.1 and pg - 1=k by (3.42) which implies

-1
by result 3.3.1 that fk = 0 except pr which equals 1. If
Sd’zj Sj,Zj
Py~ p; then py -1 >k by (3.42) which implies by result 3.3.1 that
fg 7. = 0. If these results are used in (3.41), we obtain
d*”j
P =fk =0 except for i =3j and k = p. -1
si+k,Zj si,Zj - J

in which case

P.. . .= P79,
sJ+(pJ 1),2J ZJ,ZJ

This, therefore, implies that

and this completes the argument.
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IV A NEW COMBINED ALGORITHM FOR ESTIMATING SYSTEM

PARAMETERS FROM INPUT-QUTPUT DATA

4.1 STATEMENT OF THE PROBLEM

As stated in Chapter I, the problem is to minimize the function*

te R R
J =f (@) - y(t))TW(y(t) - y(t))dt (4.1)

(¢}

with respect to the unknown parameters in F, G, H and X, of the

constraint equations

% = FX + Gu x(0) = xq

(4.2)

~ ~

y = Hx
where y(t) is the measured system response and u(t) is the measured
input. The main difficulty is that the model response y is a non-
linear function of the~unknowﬁ parameters in F and H. However, if the
measurement errors (portions of measurements which are not correlated
with wu) are negligibly smail; this problem can be formulated as a
linear problem. The linear formulation can be used to obtain an initial
estimate ofvthe’unknown parameters and this estimate can be used to
initiate the iterative solution to the nonlinear problem. The linear
formulation corresponds to an equations of motion method énd the non-
linear problem corresponds to a response curve fitting method.

4.2 THE EQUATIONS OF MOTION METHOD

For a perfect model and in the absense of noise, the output of

(4.2) will equal the measurements exactly; therefore, the difference,

“In the case of discrete measurements, the problem is to minimize

N
J= 2 (r(ti) - $(ti))W(y(ty) - y(ti)) where y(tj) is the measurement
i=g

N

of the system response at discrete times tj.
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y(t) - y(t), equals zero. Under these conditions this difference can be
fed back to the model through arbitrary gaihs K and L without changing
the model response y. The equations for the model with this error

feedback are

% =FR + Gu + K[y - HX] X(0) = x,
(4.3)
¥y = HX + L[y - HX]
which when terms are combined can be rewritten
= (F-KDR+Gu+Ky %(0) = x
4.9
¥y = (I - L)HX + Ly

The latter set of equations is illustrated in block diagram form in
figure 3.

The expressions for i in equations (4.3) and (4.4) are identical
to the state observer equation for deterministic systems as studied by
Luenberger (refs. 36, 37). Because the choige of Kand L is arbitrary,
the parameters of F - KH and (I - L)H can be chosen independently of
the unknown parameters in the system provided the structure of the system
is known (i.e., the measurements can be arranged so that the values of
p; discussed in Chapter III are known). This can easily be demonstrated
by writing the equations in the canonical form developed in Chapter III.
If the choices for F - KH and (I - L)H are defined as Fy and Hy,
respectively, and if these definitions are used in equations (4.4), y

can be written

X

F\X + Gu + Ky X(0) = xo
(4.5)

HNi + Ly

y
The advantage of using this formulation to model the unknown system is
that since Fy and Hy can be chosen, the unknown parameters are

contained in the matrices K, L, G, and x,. These parameters are
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coefficients of known forcing functions and therefore affect the model
response, y, linearly. By formulating the problem in this manner we
are constraining the allowable structure of the identified system to be
related to our choice of Fy and Hy by

Fy =F - Kd

Hy

(I - L)H

It is convenient to define &G = G - Gy and 8x5 = Xg - XN, where
Gy and XN, can be interpreted as initial estimates of G and x, and
can include any known parameters. Using these definitions in equa-

tions (4.5), we obtain

% FpR + Gyu + 8Gu + Ky Xo = XN, * %

}’; HN}I& + Ly

By linear superposition, y can be expressed
y(t) = yy(t) + A(t)sy (4.6)

where yp(t) is the response of the equations

XN

FyXy + Gnu xq(0) = x
N N N N N
0} (4.7)

YN = HNXN
8§y 1is a vector containing the unknown parameters in K, 8G, L, and 6x4;
and A(t) is the gradient matrix of YN with respect to these parameters.
When (4.6) is substituted into (4.1}, J becones quadratic in the unknown
parameters. The estimate of &y «can be obtained as discussed in

Chapter II and is given by

t - t
& = f £ ATymanat f £ AT()W(y (t) - yy(t)dt
0

0
(4.8)

When the measurements are discrete the estimate of 8y 1is given by
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i=1 f=1

N Iy
&y = [Z AT(ti)WA(ti)] [Z AT(E W (y () - }’N(ti))}

The individual components of A(t) can be computed by the numerical

solution of the differential equations

k= Ry, + 2Ky e 26y (o) = 2
i i Yi aYi Yl BYi
(4.9)
Yy. = HyXy, +5§-L7y
i i Yi

where the partial derivatives of K, &G, L, and 8x, with respect to the
parameter dJy;  are zero except for a one in the location of the specific
parameters 5yi. More will be said about the computation of these
equations in Chapter V.

The estimates for F, G, H, and x, are determined from the esti-

mates of X, 8G, L, and Xg by the relationships

N A -1 3
H= (I -1L) HN
f = Fy + K
N .
. R L (4.10)
G = GN + &G
ﬁo = xNO + Gﬁo )

In this way, the identification problem has been reduced to a sequence
of operations involving the numerical solutions of (4.7), (4.8), (4.9},

and (4.10). No iteration is required.
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Example 4.1 Identification of a Fourth-Order System With Two

Outguts

Consider the system used in example 3.2. If the matrices K and L,

k11 0]
o 0 0 0
K = s L = (4.11)
k3 k3g 73 0
Ky kyg)

are used in (4.4), this system can be modeled by

v—. — p= —— p— e — — r- o
X3 f11-k1q 1 0 0 X1 g11 k11 0
Xp £21-ko1 0 1 0 Xp €51 ka1 0
. = ' + u + y
X3 f31-k3i-kgohoy 0 0 f3u-ksa)]X3 833 k31 kso
X £1,1-ky1-kyoh 0 0 fuu-kyoll% k k
L u_ﬂ B y1-Ky1-KyoNoy by 4?; B 4_ Lg“-,* B 41 t+2_
B
¥, 1 0 0 0}fk 0 0 A
= R y x(0) = x4 (4.12)
?2 -11+hoy 0 0 1 X3 1s1 0
|

Clearly, the parameters in F - KH and (I - L)H can be chosen indepen-
dently of the numerical values of the parameters in F and.H. If all the
parameters in F, G, H, and X, are to be identified, Gy and xNO can be
chosen arbitrarily for use in equations (4.7) and the unknown parameters
in the vector vy would be ki1, koi, k31, ky1, k3o, kyos 7221, 2115 2215
g31> 8u1, X1(0), x5(0), x3(0),~ and x4, (0). An identification of F, G,

H, and xo can be obtained by using (4.7) through (4.10).
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The above identification procedure has been referred to as an
equations of motion method. This categorization is clear if the exponen-
tial function eFN(t’T) is used as the method function in the integral
transform of the assumed equations of motion (see section 2.1). The
analogy between the integral transform approach and the concept of a
linear observer is discussed in appendix B.

In the previous discussion the noise was assumed to be negligible
in the unknown system. In the presence of noise, the output of (4.5)
will not equal the measurements even for a perfect model. If the proce-
dure described above is applied to a system with noise, the estimates of
the parameters wiil be biased. The source of the bias is similar to that
discussed in section 2.1.2 for the equations of motion method. In the

case of discrete measurements, the bias is given by equation (2.16),

which is rewritten here for convenience.

i=1 i=1

N o Bl I
E{vg) = | 2 A (epIWAL(t)| |- 20 E{Ae(ti)Wys(ti)}

X
+ 2 E{AZ(ti)WAg(ti)}évJ (4.13)
1=1

The terms A¢(t;) and 8y have been used in place of Ag; énd Y,
respectively, for relevance to the present discussion. The term Af(ti)
is the gradient of y with respect to the parameters in &y if there
were no noise in the system; A (t;) is the difference between the gradi-
ent of y and A¢(tj). Finally, Ye(ti) is that portion of the measure-
ments which is not correlated with the input u or the initial
conditions xg. It can be seen from equation (4.13) that the size of the
bias is equal to a constant plus a term proportional to the size of the

estimate, 8y. If the initial choices of Fy and Hy are such that the
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estimates of K and L are extremely large, then the bias error can
often be reduced by choosing a new Fy and'HN equal to the estimates
for F and H and repeating the process. If this procedure is repeated
until the estimates, go to zero, the second term in equation (4.13) will
vanish. However, the constant bias term usually cannot be eliminated by
this process, as is illustrated in Chapter VI.

4.3 THE RESPONSE CURVE FITTING METHOD

The main reason for using a measurement error procedﬁre is that
unbiased noise in the system does not cause a bias in ‘the parameter
estimates (see Chapter II). One algorithm that can be used to minimize
(4.1) subject to (4.2) is the method of quasi-linearization. The basic
idea behind quasi-linearization has already been discussed in Chapter II.
If the initial estimates of F, G, H, and x, are defined as FN, Gy, Hys

and XNy > respectively, then X and y can be approximated by

Yy ®yy + Sy
where
kN = Fyxy + Gyu xN(0) = XN,
YN = Hyxy
- and where
§x = Fpdx + 8Fxy + SGu
Sy = Hydx + SHxy

If these equations are added together we obtain

X

(4.14)

FNX + 8Fxy + [Gy + 6Glu }

y = Hyx + 8Hx
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If the system is modeled in the canonical form discussed in Chapter III,
then the unknown parameters in ¢F and §H can be expressed in terms of

matrices K and L by the relationships

§F = F - Fy = Ki ~ Ky
R . (4.15)
§H = H - Hy = LA ~ LHy
where the approximations are based on &F and 8H being small. If
equation (4.15) is substituted into (4.14), we obtain.
X = FNi + KyN + [Gy + §G]u x(0) = XN, * Sx,
) . (4.16)
y = Hyx + LyN

Equations (4.16)'are identical to (4.6) except that YN has replaced y.
Parameter estimates can be obtained by the numerical solution of equa-
tions (4.7) through (4.10) with the exception that YN is used in place
of y in (4.9). New estimates of the unknown parameters are obtained
by the solution of (4.10). _ If they differ significantly from the initial
estimates, the procedure is repeated. In this way an iterative procedure
is established for determining the unknown parameters, y, that minimize
(4.1).

4.4 THE COMBINED ALGORITHM

The idea for a combined algorithm is now evident. The structures of
the equation error and measurement error problems are identical except for
the computation of the components of A(t). The only difference here is
whether measured or estimated data are used in the sensitivity equa-
tions (4.9). If measured data are used, the procedure provides an esti-
mate of F, G, H, and x, 1in a single sequence of operations essentially
independent of the initial choice of Fy, Gy, Hy, and XNo * In the

absence of noise, this estimate is the same as the quasi-linearization

62



estimate; but if there is noise in the system, this estimate will be
biased. Choosing a new FN, Gy, Hy, and XNO equal to the estimates of
F, G, H, and x, and repeating the equations of motion method usually
reduces the bias error in the estimates. However, the bias cannot be
eliminated completely by repeated application of this process. On
achieving the best estimate by the equations of motion method, the com-
bined algorithm replaces y by yNy in the sensitivity equations (4.9).
This implements the response curve fitting method which generally con-
verges to.the unbiased estimate very rapidly.

This procedure is illustrated in figure 4. When the switch in the
upper center of the diagram is in the (+) position, we are using the
equations of motion method and when it is in the (-) position, we are
using the response curve fitting method. For the initial set of itera-
tions, the switch is in the (+) position. After that, it is in the (-)
position. The rest of the computational structure remains unchanged.

The components of A(t) are computed by the numerical solution of the
sensitivity equations (4.9) which are labeled in the figure. The outputs
of the sensitivity equations are used to form the products A(t)TWA(t)
and f(t)TW(y - yN) which are integrated simultaneously in order to reduce
storage requirements. The diagram is for continuous measurements. In
the case of discrete measurements, the integrations over the interval

(0, t} on the right hand side of the figure would be replaced by
summations. The estimate 6} is obtainedkby the solution of (4.8) at
the final time tg, and the unknown parameters are computed using (4.10).
The process is then repeated as indicated where the superscript (1)
indicates the new estimate and the superscript (0) represents the

previous estimate.
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In order to apply the combined algorithm, it is necessary that the
equations be written so that the unknown parameters can be affected
independently by the parameters in the matrix products KH and LH.® It
has been shown that this is always possible by going to the canonical
form discussed in Chapter III. If the transformation results in fewer
unknown parameters than were in the original equations, the transformed
equations are preferable. However, if writing the equations in an appro-
priate form to apply the combined algorithm results in more unknown
parameterss than in the original equations, it is clearly better to stay
with the original equations. On the first few iterations those sensi-
tivity equations that can be driven with the measured states are so
driven, and the remaining sensitivity equations are driven with the

estimated states.

>See equations (4.3), (4.4), and (4.5).
b Constraints relating these additional parameters are available, but

are generally difficult to take into account.
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V__A SIMPLIFICATION IN THE COMPUTATION OF THE SENSITIVITY

FUNCTIONS AND INTEGRALS OF THE SQUARED

SENSITIVITY FUNCTIONS

5.1 COMPUTATION OF THE SENSITIVITY FUNCTIONS

5.1.1 Statement of Problem

The problem can be stated as follows. Given a system described by
the equations
= Fx + Gu x(0) = x4 (5.1)
where Xx 1s an n-dimensional state vector and u is a p-dimensional
input vector, and assuming that the system is cyclic,7 find the first-
order variations of the system state caused by unit perturbations of the
parameters in F, G, and Xo. These sensitivity functions can be

computed from the equations

g (t) = Fng. (t) +—— glJ (t) xgij (0)y=0, i=1, . . ., n
j=1, s P
(5.2)
. , 9Xg .
Xxj (0) (€ = Fxx; (0) (1) )@ mgEy 0 it e
(5.3)
Xy 5 (8) = Fxgy; (6) + 213 (8 xg5(0) =0, i=1, .. .,n
ji=1, » I
(5.4)

7A system with state coefficient matrix F 1is cyclic if there is a

n—lZ l 1’1—2.Z l

vector . so that the n vectors [F F | 71 are

linearly independent.
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The notation xgij(t) denotes the sensitivity function for the parameter
in the ith row and jth column of G. Similar definitions apply to
Xfij(t] and xxi(o)(t). In this chapter we will establish the following
important result.

Result: If the system (5.1) is cyclic, the system response and the
sensitivity functions with respect to the system parameters and initial
conditions can be obtained by linear combinations of the solutions to
(p + 2) differential equations of order n.

5.1.2 Development

Since it is assumed that the system is cyclic, there is a non-
singular transformation T so that equations (5.1) can be written in

companion form (ref. 38).8

z(t) = Tex(t) (5.5)
z(t) = Az(t) + Bu(t) z(0) = zo = TcXo - (5.6)
3.1:
|
A = ; ! (5.7)
AR

The variations in z(t) caused by unit perturbations in the parameters
in A, B, and the initial conditions 2zo can be computed by the

numerical solution of

8The value of T. is given by the inverse of the matrix
[Fn—ll | F2g | . .. ] 71 where 1 is any vector such that an inverse

exists.
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()
. ) 3b , ) -
Zle(t) —AZbij(t) +B_b_'—'- U.J(t) Zle(O) =0, i=1, 2, . . ., n

lJ j=1, 2, . . ., p
. (5.8)

. Z .
27 (0) (1) = Azz, (0) (8) 225 (0) (0 =35§ﬁ%ff , i=1,2,...,n
(5.9)

(1)

2a; (1) = Azg, (1) +3§ai 24 za; (0) =0, i=1,2, . .., n
(5.10)

where b(J) is the jth column of B and a(l) is the first column of A.
The response z(t) can be obtained by linear superposition from (5.8)

and (5.9).

P n n
2(6) = 2 2 bijzp; (0 v B 23 (0) 2z (5) (1) (5.11)
i=1

j:l i:l

The system response, x(t), and the sensitivities (5.2)-(5.4) can be

obtained from (5.8)-(5.11) bf the relationships

x(t) = T, z(t) (5.12)
(o] o]
72! £) ) P 0 2L (5.13)
+ + z — .
c zaZ( ) ij bz Bgij ZZz(O) 3 j
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-1
oT

c
Xfij(t) = S?E;.Z(t)

+ T_1 Zq,(t) Eil_ + Zh,, (t) EEEE + z (t) Ef}fgl (5.14)
¢ |"ag afij 7k afij z7(0) Sfij )

3T,
XXi(O)(t) = 3 i(O) z(t)

(o} o]
: 1 3 3b 3ZZ(O)
+ TC Zaz(t) 5 1(0) + ZbZk(t) 5%7(0) + ZZZ(O)(t) 5§ETBT (5.15)

where repeated subscripts imply summation. As a result of theorem 5.1
which is stated below, the n(p + 2) sensitivity functions (5.8)-(5.11),
hence the model response (5.11), can actually be computed by linear
combinations of the solutions to the (p + 2) nth-order single-input

differential equations

£ () = aed () + Zuj (1) =0, j=1,2,...,0p (5.16)
P 0) = AP (1) ) =2 (5.17)
“p+2 p+2

P20 = AP (1) + 22, (0) PTE) =0 (5.18)

if the vector [ is chosen so that these systems (5.16) to (5.18) are
controllable. The result stated in section 5.1 of this chapter is
thereby established.

Theorem 5.1: If the solution to the single input system
x(t) = Fx(t) + gu(t) x(0) =0 (5.19)

is known, and if the system is controllable, then the solution to

the system
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z(t) = Fz(t) + g'u(t) z(0) = 0 (5.20)

for arbitrary g' can be obtained by a linear transformation, T, on the
solution for x(t) (i.e., z(t) = Tx(t)).
Proof: If x(t) is the solution of (5.19) then xj(t) A FxJ(t) is

the solution to
Bt = FI(t) + Pgu(t) x°(0) =0 (5.21)

where
j=10,1,2,3,’0~,n—1

Since the system'(s.lg) is controllable, the control coefficient vectors
in (5.21), (g, Fg, . . ., Fn_lg) are linearly independent and the control
coefficient vector g' in (5.20) can be expressed as a linear

combination of these vectors,

: n-1 .
g' = z ociFlg (5.22)
i=0

Therefore, by linear superposition the response to equation (5.20) can be

obtained from the solution to equation (5.19) by the relation

n-1 ) n-1 . :

2(t) = 2, oxi(t) = 25 oyFix(t) (5.23)
i=0 i=0

and this concludes the proof.

Comment: The a; can be computed by the equation

%n-1 .
= [Fn'lg | "% | ... g] g' (5.24)
Go

This is immediately evident from (5.22).
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Corollary 1: Theorem 5.1 also applies if (5.19) and (5.20) are
homogeneous differential equations with x(0) = g and z(0) = g,
respectively.

5.1.3 Higher Order Derivatives

This same procedure can be used efficiently to generate higher-
order sensitivity functions since the (n + 1) order sensitivity function
is the first-order sensitivity of the nth-order sensitivity function.
These higher-order sensitivity functions are used in certain numerical
methods sucl. as the Newton-Raphson procedure which require second or
higher-order partialrderivatives.

5.1.4 Special Case

Problem: Consider a single-output, multi-input system that is
observable and controllable. The system can be modeled by equations of
the form (5.6) and (5.7) where the measurement y is related to 2z by
y(t) = Hz(t) where H= (1 0. . . 0). Use the solutions to a minimal
number of differential equations to compute the variations of the
measurements y(t) due to unit perturbations in the system parameters
and initial conditions. These variations can be computed from the sensi-

tivity functions (5.8) to (5.10) by the relationships

Yz;(0) (t) = Hzz, gy (t) (5.26)
Ya; (t) = Hza, (t) (5.27)
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Solution: Choose the vector 7 in equations (5.16) to (5.18) to
be

tT=10 o0...1]

The corresponding controllability matrix [A" 'z | A™22 | . . . | 7] is
the identity matrix, and the systems are controllable. The solutions to
equations (5.16) to (5.18) can therefore be used with the transformations
defined in theorem 5.1 to obtain the sensitivity functions for the system.

The variations of the system measurements, y, are related to the solu-

tions, ak(t), k=1, 2, . . ., p + 2, by the following transformations
n-i_j
yoy; (0 =T is1,2, .. n ]
j=1,2, .. .,0p
ra o ® = W i1, (5.28)
ya; () = BATEP2(e) =1, 2, .. .,
, )

Equations (5.28) provide a solution to the stated problem; however, the
computational savings due to the reduction in the number of required
solutions to differential equations is somewhat offset by the algebraic
transformations. These transformations can be eliminated from the

computations by defining the vector

okey = | . | (5.29)

The variations in y are then given by the components of pk(t)
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. )
= d -
yle (t) = pl(t) 1= 1: 2’ > N
J = 1"2, > P L
_ b+l - (5.30)
Ve(y® =87 i=12, .. .0
= oP*2 i =
Yai(t) pi (t) 1 1’ 2) « + «, 1 )

where p?(t) is the ith component of the vector pk(t). The vectors,

pk[t), are the numerical solutions of the equations

pl(e) = ATod (0) + T'y; Pl =0, j=1,2, ;P
Py = ATeP* (o) SO (5.31)
P2 (1) = Afpp*zct),+ 1'z; oP*2(0) = 0
where
anT=11 o... 0]

and where (by eqs. (5.11) and (5.30))
n n J n P"'l
2;(8) = y(£) = 20 25 bijei(t) + 20 23 (030} ()

j=1 i=1 i=1

5.1.5 Application With the Combined Algorithm .

In the combined algorithm, the system is modeled so that the
measurements act as additional inputs to the model, and thé sensitivities
of the parameters in the state coefficient matrix, Fy, are not required.
There are p + m inputs to this model where p is the number of actual
inputs and m is the number of measurements. A maximum of (p + m + 1)
nth-order differential equations are required to obtain all of the
sensitivities used in the combined algorithm. If the system is cyclic

then the solutions to any set of equations of the form
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- - - \
gl = Byl + ug gdo=0 =1, 2, , P
PP ey, PMom=0 i=1,2,...,m } (5.32)
ép+m+1 - FN€p+m+1 gp+m+1(0) -7
Y,

(where 1 is chosen so that the systems are controllable) can be used
to obtain the required sensitivity functionms.

5.2 COMPUTATION OF THE INTEGRALS OF THE SQUARED SENSITIVITY FUNCTIONS

5.2.1 Continuous Measurements

In addition to the sensitivity equations, the function

- te
> AT(t;)WA(t;) or f AT (t)WA(t)dt (5.33)
1=1 [¢)

must be computed. If there are q unknown parameters, these matrices
contain qfq + 1)/2 summatidns or integrations with each involving m
summations. An alternative to the direct computation of these matrices
is to take advantage of thé felationships among the elements of these
matrices provided by the sensitivity equations. First we will consider
the continuous case and then extend the‘reSults to the case of discrete
measurements by applying numerical integration approximations.

Because the components of the matrix A(t)} (the mat?ix of sensi-
tivity functions) can be obtained by linear transformations of thé
solutions to (p + m + 1) nth-order differential equations (which we will
refer to by the vector oT = [EIT ] g2! | ... €p+m+1T] , the elements
of (5.33) can be obtained by linear combinations of the elements in the

matrix

tf
f eeT dt : (5.34)
(¢
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A differential equation for 067 can be obtained from equation (5.32)

T T

ée +6é

This implies that -

eeT|t=tf -60T| ;=

tf
+f
0

Fy 0 Fy
="&C'IE (e6T) = 66T + 00T
0 FN LO
—_ - _
7 0..0 .7 0
0 .
.q{u 0 A
. T +o[ul yT] .
1LY
0 0. .0 N
FN 0 tf
: f 60T dt+f
0 Fy o o
(2 0..0] 1T o
0o 7. u - |0 T,
. -7 ol +oul yT |.
Y.
0 0 0 0

A

.jdt

(5.35)

T o]

(5.36)

which provides a set of [(p +m + )n][(p + m + 1)n + 1]/2 linear

equations in the [(p + m + 1)n][(p + m + 1)n + 1]/2 unknowns of

J(')tf 06T dt and

[
[c]

0. .0
1

-1
0 0

0

the [(p + m)2(2n - 1) + (p + m)(2n + 1)]/2 unknowns of

dt (5.37)
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It is well known (ref. 38) that if Fy and —Fg have no common
eigenvalues, equation (5.36) can be solved uniquely for .gtf 001 dt
in terms of

00T| - 00T o

t=tf
and (5.37). Clearly, if Fy is stable with no eigenvalues with zero
real parts, it will have no eigenvalues in common with —FE and the
above equation can be solved. In general, this procedure requires fewer
integrations than would otherwise be required. There are algorithms
available for solving the matrix equation (5.36) (see refs. 39 and 40),

and it would appear that some advantage can be gained by using this idea.

Example 5.1 Single-Input, Single-Output, Second-Order System

Consider a stable (no eigenvalues with real parts greater than or
equal to zero), single-input, single-output, second-order system modeled

in its canonical form,

X = + Bu x(0) = X
_ } (5.38)

y = Cx
where
a_]_, 1 b]_

ag 0 bg

Suppose that the two parameters in A, the two parameters in B, and the
two initial conditions are to be identified. The sensitivity functions
can be obtained by the numerical solution of equation (5.31) which were
developed in section 5.1.4 entitled "Special Case.'" The matrix of sensi-
tivity functions, A(t) (which is not to be confused with the state

coefficient matrix A 1in this example), is given by

T T 4T
A(t) = [él , p2°, p3 ]
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and the matrix of integral squares of the sensitivity functions is equal

to

te
f AT (t)WA(t)dt (5.39)

0
Because this is a single-output system, W is a scalar and can be set

equal to unity. Expression (5.39) is a 6 x 6 symmetric matrix and can

be computed by performing 21 integrations.
If the procedure outlined in expressions (5.34) through (5.36) is

followed, it can be shown that the matrix f;tf AT(t)A(t)dt must satisfy

the equation

ATOA) [y, - ATOAMD

t t
AT o 0 £ £ A 0 O
=10 AT o AT(t)A(t)dt + AT(Ha(t)dtlo A
0 o AT : 0 0 A
(6] 0]

(o]

t
S g WA 0
u Z'T 0 0
+ (A ACt) +AM U y] T at
y ' 0 A 0
0 0]
(6]
(5.40)
where
- -

AT |, =
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and where

tefl 2
0
0

0
u

ol

o JLy

(o

J

-

A(t) + A)T[u

.

1
2

0

2up11 up

o

L.

T

A 0 0
4 o 27T o a
w,2eyp,l upp?  up,? ung-
yo ! 0 0 0
2yp,? y0,2  ypyd  yp,® o
0 0 0 (5-44)
0 0
0 —

‘Since the system is stable, we can compute the 11 integrals in

equation (5.41) and then solve the algebraic equation (5.40) for the

t
21 integrals in J; £ AT(t)A(t)dt. Another procedure is to use only the

10 equations provided by (5.40) for which the terms in (5.41) are equal

to zero.

(o}

(o}

o}

ftf 011911

ftf 0,152

L 5,20,2

dt

dt

dt

(o]

[¢)

(o)

then the 10 pertinent equations
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polppt
202t

02202 g,

t

L5 011012 at
t

JH o,1003 dt

ftf 922013 dt

If we compute the 11 integrals

t
f £ lepzl dt

t
A S 0,102 dt

O

t t
I 05t023 at L f 012012 dt

0

t

in (5.40),

t
2 J; f pllpzl dt

t
2 IO f 012022 dt



3. 923P231t=tf =2 j;tf p1%02% dt

4. p21022|t=tf = J;tf (p1le22 + p1%0,1)dt

5. pzlpz3|t=tf = J;tf (p1le2® + p1%0,1)dt

6. 9229231t=tf = J;tf (p1%p23 + p13p,p2)dt

7 o oeater g, IS (o1'e1® + 2101’27 + agoz®ep’)dt
8. p229131t=tf - J;tf (p1%01% + 21013052 + 295 30,2)dt
9. P1%01% oy, - 1 = J*E 221013013 + agen®o1ddt

10. F*3p22|t=tf = J;tf'(alpl%zz + 30023023 + 913913)(1t

can be used to solve for the remaining 10 .integrals as indicated

J;tf o1lpy! dt = %_pzlpzlit=tf
.’;tf p12022 dt = %‘ 022022|t=tf
J;tf 0130,% dt = %'923923It=tf
J;tf p1tpp? dt = pzlpzzlt=tf - J;tf p2lp12 dt

t tf
S 01lpp3 dt = p21023It=tf . 4; 0,1p13 dt



t

tf
Pzzpzslt=tf - JF pp%1? dt

tf 1,.3 = 5.15.3 _ [tf 1,.3 1,.3
J; p17p1” dt = pyp) ]t=tf fo (a1p2°p1” + agpa’pp)dt

t tf
S Eer%1® dt = 052003 - [T (a102%01% + agor?ep?)dt

1]

t 1 t
-/; £ 01313 at Ta; (013013|t=tf -1 - 2a9 J; £01%,° dt)

tf 3. 3 1 3, 2 _ptf 2.3 3.3
A P27ep” dt = o 1Ry |t=tf LF (2102%01° + p1%1%)dt

5.2.2 Extension to Discrete Measurements

Numerical integration approximations for the integrals in (5.36) can
be used to compute the matrix .gi Aﬂkti)WA(ti) in the case of discrete
measurements. Let Vij(t) be a;=;lement in the matrix AT(t)WA(t) {see
fig. 4) and let time be indexed from 1 to N where t; = 0 and ty = tg.
The relationships between the integrations and the summations are given
here for the rectangular, trapezoidal, and Simpson's rule integration

Toutines.

1. Rectangular integration routine

tf N
J' V5 (D)t = At [Z Vo (81) - \‘er(tN)]

i=1
o]
or
N ‘ 1 te
i-zl VZk(ti) s 'A—tf Vlk(t)dt + vZk(tN)
= O
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2. Trapezoidal integration routine

N R .
tf . 3 . VZk(tl) + VZk(tN)
f v, ()dt = At ZvZk(ti) - 2
o :
i=1
or
N tf . .
Vo (t1) + v (ty)
E : 1 . 1k 1k N
vZk(ti) 2 EJ' VZk(t)dt + >
i=1 o)

3.‘ Simpson's rule integration routine (modified)

The»Simpson's rule routine requires that the total integration
interval be divided into an even number of subintervals (the function is
evaluated at an odd number of points). If the function is evaluated for
an even number of points, the trapezoidal method can be used to integrate
over one of the end subintervals and Simpson's rule used for the
remainder of the integration. However, application of Simpson's rule

, N
does not provide a direct relationship between 2: vZk(ti) and

te - 1=1
J; vZk(t) dt.

Let us assume that the total integration interval is divided into
an even number of intervals or that N is an odd number. Simpson's

rule provides the relationship

tf
f v, (D)dt

0
(N-1)/2 (N-3)/2
~ Lol (e i) +4 D V() 12 ) ()|
i=1 i=1

This integration can also be approximated by using a trapezoidal
integration over the first and last subintervals and using Simpson's rule

for the points between. This procedure results in the relationship
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t
J; £ x‘er(t)dt ~ [(\'er(tl) + ier(tz) + \'er(tN_l) + \'er(tN))/Z]At

(N-3)/2
v g 0tfig(te) ¢ iy ) + 4 Z Y1k (o541
i=1
(N-3)/2
£20 Y () (i)
i=1

A directbrelationship between the integration and summation can now be

obtained by téking the average of approximations (i) and (ii),

tf
J‘ v (t)dt = (i + 11)/2
o
N

Z\?Zk(ti) - —Zé—) (VZk(tl) + VZk(tN))
i=1 - .

* (‘1?) ( Vo (t2) + V(e 1)) (iii)

or

N te
ZVZk(tl) 1 J‘ v ()t
i=1 o)

(—12‘)[7(" g (t1) + V7 (8)) = (v, (£2) + 37, (ty 1))]
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VI__APPLICATIONS

6.1 LINEAR SYSTEMS

6.1.1 Simulated Data

The short-period dynamics of the C-8 airplane in the landing
approach were simulated and the attitude rate response due to an elevator
deflection was computed. The initial conditions were set equal to zero.
Three different noise sequences, all having a variance of (0.005) rad?
and a 0.2 second correlation time constant, were added to this attitude
rate data t¢ give three different runs. These same three noise sequences
were also subtracted from the attitude rate data to give three additional
runs making a total of six runms.

For this particular example it is convenient to model the unknown
system in its canonical form. The canonical form for the short-period

equations of motion with only measurements of attitude rate is given by
3
3} f11 1|z g11 z)
+ Se =0
z f 0] Lz z
2 21 2 853 2]
z1
q=1[1 0]
Z2
/7

where z; 1is the attitude rate, zp, is a linear combination of attitude

3 (6.1)

rate and angle of attack, and J, is the elevator deflection. The set

_ of parameters in K, L, 6G, and 8z, which can be used to identify the
unknown parameters in equations (6.1) are

K = [kll], L=0, 6Gs= "1 . 6z5=0 (6.2)

ko 6g,,

To illustrate the equations of motion method and response curve

fitting method portions of the combined algorithm independently, the six
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runs were first analyzed by means of the equations of motion method
portion of the algorithm. The estimated‘parameters of the canonical
form were averaged over the six runs to reduce the error in these esti-
mates due to variance and thereby illustrate the bias error. These
averaged estimates are plotted in figure 5 against the number of itera-
tions. The initial choice of the parameters, Fy, Hy, and Gy, denoted by
the zero estimate, was purposely made considerably different from the
actual values to emphasize the insensitivity of the convergence on this
initial estimate. By the second iteration, the procedure has essentially
reached a steady-state value for the unknown parameters, and subsequent
iterations do notrsignificantly change these estimates. The important
point is that there is a very definite bias in these answers.

To illustrate that the bias observed in figure 5 can be eliminated
by switching to the response curve fitting method, the final averaged
estimates obtained by the equations of motion method in figure 5 were
used to initiate the response curve fitting method for the same six runs.
The average values of these estimates are plotted against the number of
iterations in figure 6. As is shown, the bias is quickly removed. The
final averaged parameter estimates are very close to the actual values.

6.1.2 Flight Data

The combined parameter estimation algorithm is also illustrated
here by application to two sets of flight data. The first set of data
included measurements of the attitude rate and elevator deflection for
the C-8 airplane in the landing approach configuration over a period of
4 seconds. These data were used to identify the coefficients of the
transfer function relating pitch rate to elevator deflection. The air-

plane was initially trimmed and therefore the initial conditions were
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assumed to be zero. The aircraft was excited by a doublet type elevator
deflection. Because of the type of input and the short duration of data,
the phugoid (long-period) mode was not noticeably excited. For this
reason, the system was represented by the short-period dynamics and was
modeled by the single-output canonical form (6.1). The estimated coeffi—
cients are plotted against the number of iterations in figure 7. The
initial or zero estimate was purposely made considerably different from
the expected system parameters to emphasize again the insensitivity of
the method on this initial estimate. After four iterations, the param-
eters settled to a steady-state value. The equations of motion method
portion of the combined algorithm was used during the first two itera-
tions. The combined algorithm then switched to the response curve
fitting method.

An indication of the accuracy of this identification is in
figure 8. The time history of the elevator input is shown on the left
side of the figure. This input has used together with the identified
system dynamics

g + 2.276 § + 2.558 q = “1.913 e - 1.82 8, (6.3)
to compute an estimated attitude rate. The computed attitude rate is
shown by the solid line on the right side of the figure and £he measured
attitude rate by the symbols. Clearly, the estimated transfer function
provides a very good relationship between the input and output data.

The second set of data included measurements of the attitude rate,
forward velocity, vertical acceleration, angle of attack, and elevator
deflection for the C-8 airplane in the landing approach configuration
over a period of 17 seconds. These data were used to identify the param-
eters in the linearized longitudinal equations of motion. In this case,

the phugoid dynamics were definitely excited. The body axes of the
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airplane were nearly alined with the stability axes so that the vertical
trim velocity, wp, was set equal to zero. The vehicle and measurements

were modeled by the equations

i -1 — —y g - pro -
. Xy Xq
u - -g -vg 0 Y u 0
6 0 0 1 0 0 6 0
My Mz Mg+ Myzg My M&zae Mso
g l=|2. 80 M1 | [P I i SO PSS
Iy ~ Iymug _ Iy Iymugy Iy Iymug Iy
z
z z J
| | -20 = 0 0 -20 -20 = |fa, -20 —=
z
Z z 8
& Zu 0 1 0 o o —£
e el L. —L_J s v

(6.4)
The states u, 8, q, and o are the perturbations in forward

velocity, attitude, attitude rate, and angle of attack from level steady-
state flight; a; is a filtered measurement of the vertical acceleration.
The filter time constant was 0.05 second, and this is indicated by the
factor of 20.0 occurring in the equation for acceleration. The control
variable, 8o, is the elevator deflection. The trim velbcity u, and
the gravitational constant g are assumed known. The vehicle was ini-
tially trimmed, so the initial conditions were assumed to be zero. The
other parameters in the F and G matrices depend on the aerodynamic and
mass characteristics of the vehicle and are considered unknown.

In this case it is not necessary to go to the canonical form. Since
the unknown parameters in (6.4) are coefficients of the measured states,
u, q, and o, a matrix Fy can be chosen identical to F except for the
numeric values of the unknown parameters and still be related to F by
the equation Fy = F - KH. The dependency between the parameters in the

fourth and fifth rows of F and G in (6.4) (i.e., fy;=-20upfg;,
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fus = -20uyfss, and g, = -20upg,) can be maintained by including this
dependency in Fy and by defining K and §G as indicated below. There
are only seven unknown parameters in K and two in &G. The set of
parameters in K, L, 6G, and 8z, to be used in the combined algorithm

is given by

i K1 0 0 Kiy ]
0 0 0 0
K = K31 Ksg 0 Ksy |, L=0 (6.5)
-20uoKsy 0 0  -20ugKsy
| Ks1 0 0 Ksy |
- -
0
0
8G = 6g$1 , 825 =0 | (6.6)
20u48g g, .
| %8s

Since this is a multioutput situation, an appropriate weighting
matrix, W, must be chosen for use in equation (4.1). For this example,
the reciprocals of the weightings on u, q, a, and o were.chosen to be
(1 ft/sec)2, (1°/sec)?, (1 ft/sec?)2, and (2°)?, respectively, and |
reflect the relative confidence in the measurements.

The results of this identification are shown in the 10 columns of
figure 9. The parameter symbols are given in the first column. The
initial estimates used to start the algorithm are given in the second
column. The third and fourth columns give the estimates after the first

two iterations using the equations of motion method. The remaining
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columns correspond to successive iterations using the response curve
fitting method. Significant changes in the unknown parameters do not
occur after the third or fourth iteration.

The identified parameters were used with the measured input to
compute time histories of the velocity, attitude rate, vertical accelera-
tion, and angle-of-attack perturbations. The computed and measured
quantities are compared in figure 10. As in the first example, the
estimated parameters provide a very good relationship between the input
and output data.

6.1.3 Digital Modeling of Continuous Systems

There aré mény integration algorithms that can be used to solve
differential equations on a digital computer. The identification
algorithm discussed in this report has been implemented by the Adams-
Moulton method, the Runge-Kutta method, and a discrete transition matrix
method. All three methods were used to estimate the parameters in the
short-period transfer function relating pitch rate to elevator deflec-
tion from flight data. Figure 11 shows a comparison of the results.

For the sample length (0.05 sec) and for the dynamics in this
problem, the effect of the integration algorithm on the parameter esti-
mates is negligible. However, when the Runge-Kutta and transition
matrix methods are used, some care must be taken in interpreting the
input.

If the Runge-Kutta method is used, then the solution of the
differential equations at time tj + At depends on the solution of the
equations at time t; and on the input at times tj, tj + At/2, and
t; + At = tj+;. The input u(t) is measured only at times tj, and

ti+1; it must therefore be approximated at time tj + At/2. Since u(t)
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Figure 10.- Comparison of measured and estimated data.




afs) _

by S + bp

Bels) ~ Sz—a1 S-ag

INTEGRATION PARAMETERS
ALGORITHM ‘
bq bo a ag
ADAMS—MOULTON -1.960 | -589 | -1.976 | -1.559
RUNGE—KUTTA _-1.966 | -593 | -1.980 | -1.560
TRANSITION MATRIX | -1.968 | -.588 | -1.982 | -1.556

Figure 11.- Effect of integration algorithms on the parameter estimates.
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is a continuous function and At is quite small, it may seem that
u(t; + At/2) can be approximated by either wu(tj) or u(tjsi). It is
clear that such an approximation will change the phase relationships
between the input and the output. A better approximation for
u(tj + At/2) is given by a linear interpolation of the measured data,
u(ti + At/2) = (u(ti) + u(ti+1))/2 (6.7)

The effect of these three interpretations of the input on the estimates
for the parameters is illustrated in figure 12. The difference in the
estimates is significant. The estimates presented in figure 11 were
obtained by using (6.7).

In the transition matrix method, the differential equations are
represented by the discrete equations
ex(ty) + Fﬁ(ti)}

Hx (ti)

x(ti+1) (6. 8)

i

y(ty)

where u(tj) is a piecewise constant approximation of the input wu(t).

The matrices ¢ and I' are related to the F and G matrices in the

differential equations by
FAt

5= o (6.9)
tie] ts, ) -
Ti(t;) = J' Gy iy dr - JF PP Dggaes)
ti ti
= F ' [o - I]Gu(t;) (6.10)

The parameters can be estimated from the estimates of ¢ and T by the

relationships

F=§;mgm-1]~£z{m-x]-%[¢-u2+%[¢-u3+.. }

(6.11)
G=[o - 1] lFr
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u(ti , At ) PARAMETERS

APPROX!MA?TED BY | b bo a1 ag
u(t;) -2.050 | -.390 | ~2.075 | -1.355

ult) *ult+ A0 | 1 966| -503 | -1.98 | -1.560
ultj + At) [ -1.876 | -.820 | -1.907 | -1.788

Figure 12.- Effect of input interpretation on parameter
estimates - Runge-Kutta.



Again, since wu(t) is continuous and At is small, it may seem that
ﬁ(ti) can be approximated by either u(tj) or u(tj.;). Both approxima-
tions will cause an error in the phase relationships between the input
and output. A better approximation is to use an averaged value for u(tj)

u(ti) = [ulty) + ultiv)1/2 (6.12)
The effect of these three interpretations of the input on the estimates
for the parameters is illustrated in figure 13. As in the discussion of
the Runge-Kutta method, the difference in the estimates is significant.
The estinates in figure 11 were obtained by using equation (6.12).

6.1.4 Effects of Certain Model Errors

If one suspects that there are biases in the measurements and if
there are uncertainties in the initial conditions, then these quantities
should be estimated as well as the parameters in the differential
equations. The effect of including these terms in the identification
of the system parameters is jllustfated in this section.

A maneuver similar to that discussed in the first part of
section 6.1.2 was repeated eight times during a single flight of the C-8
airplane. The data from each maneuver were used to estimate the param-
eters in the transfer function relating pitch rate to elevator deflec-
tion. Although the plane approached steady-state trim conditions between
maneuvers, the initial conditions and the trim elevator position were not
quite zero. In the first identification of these parameters, the initial
conditions and unknown biases were assumed to be zero. The results of
this identification are shown in figure 14. The parameter symbols are
given in the first column; the estimates for these parameters obtained
from the individual maneuvers are given in the next eight columns. The
last two columns contain the mean and mean squared error of these param-

eters. The mean was computed by averaging the estimated parameters, and
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PARAMETERS

ult;)
APPROXIMATED BY
bq bg ag ag

ult;) -2.091 | -.290 | -2.131 | ~1.255

1) + ulty +
E(i—“z(i—e‘—t’ -1.968 | -.589 | -1.982 | -1.556

u(tj + At) -1.832 | -.941 | -1.881 | -1.909

Figure 13.- Effect of input interpretation on parameter
estimates - transition matrix method.
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the mean squared error was computed by averaging the square of
difference between the estimated parameters and the computed mean. The
parameters obtained from the sixth maneuver were not included in these
computations because they were substantially different from those
obtained during the other maneuvers. The mean square error of the

system response is defined by
1 N
M.S.E. = (‘1\?) > (a(ty) - 4(t)2 (6.13)
i=1

where ¢ .is the attitude rate and is indicated in the bottom row of the
figure. Although the estimated parameters provide a good fit of the
data as indicated by the M.S.E., there is a large variation in the esti-
mated parameters. This is particularly true for the parameters identi-
fied in the first maneuver. The algorithm did not even converge for the
data from the third maneuver.

In the second identifica;ipn of the system parameters, the initial
conditions were also treated as unknown parameters. The results are
shown in figure 15. The initial conditions are indicated in the first
column by the symbols x;(0) and x,(0). The estimated parameters in the
first maneuver agree better with those obtained from the other maneuvers
and the third maneuver converged without difficulty. Again, the esti—
mates of the parameters for the sixth maneuver were not included in the
computation of the mean and mean squared error for the parameter esti-
mates. Including the initial conditions has reduced the computed

variance in the parameter estimates by nearly a factor of 3.
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In the third identification, the initial conditions and a bias
error in the trim elevator position were treated as unknown parameters.’®
The results of this identification are illustrated in figure 16. The
computed variances for the parameters bgp and a, have been reduced from
the results in figure 15 and this identification appears to be the best
of the three considered.

6.2 IDENTIFICATION OF A NONLINEAR SYSTEM USING A COMBINED ALGORITHM

6.2.1 Problem Statement

This problem was posed by personnel of the Cornell Aeronautical
Laboratory who supplied the equations of motion as well as the simulated
data. The equationé of motion describe the longitudinal response of

VTOL type aircraft and are given in body axes by

[ x|

1
X ny I3x3 : O«
R e T A T EROR bt RO
z Ny Lz

Al

zT = [qu, u?, uw, qw, sin(8, + 68), cos(8y + 6), Ube, s, 1]

e’
0 0 0 1 0 0 0 0 0o - 0

0 0
R o lo
Ae u  fw uw Use Se or
0 Zu Zw . @ Zgw O 0 . Zug,  Zsg Zo
0

0 My My Mu M2 My, O Mag, Mo, Mo

A' = A except that the circled terms are zero. /
(6.14)

IBecause this is a single-input single-output problem, the effect of

any biases in the measurements will be eliminated by treating the initial

conditions and a bias in the input as unknown parameters.
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6, u, w, and q are deviations from the trim attitude, horizontal
velocity, vertical velocity, and attitude‘rate, nx and n, are accelera-

tions in ft/sec?, de 1is the elevator input, and the noise is gaussian

with zero mean and covariance
E{v(ti)v(t;)T} = Réy; (6.15)

The parameters wg, Ug, and g in A are assumed known. The remaining
parameters are to be estimated. It should be noted that the identifi-
ability orX these parameters is dependent on the input. For example, if
8¢ 1s a step input there is no way of distinguishing between the
éoefficients of urand ugy; these coefficients must therefore be
combined.

6.2.2 Estimation Technique

Using the measurement error techniques, we will minimize the

function

( ) 2: [y(t1) - y(tl)] Wy (ti) - y(ti) (6.16)

with respect to the unknown parameters in the constraint equations
)

e

i

b
[ o |
N> >
e

(6.17)
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| ——

where W 1is a diagonal matrix and the elements in W are updated by
taking the inverse of the sample variances of the residuals; in other
words, W 1is set equal to the inverse of the estimate for R. One

method for solving this problem is the method of quasi-linearization
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discussed in Chapter 2. Although quasi-linearization provides fast
convergence if initiated from a suffiéiently accurate initial estimate,
an initial estimate is not always available. Theridea behind a combined
algorithm is to modify the existing computational structure in order to
implement an equation error method on the first iteration. In this
example, an appropriate modification is particularly straightforward.
The response, yy. and the components of the matrix of sensitivity

functions A(t) are computed by

F'XN- \
5(N = AN
LZN
¢ (6.18)
[ XN '
YN = CN
LZND )
and
- A
i oA |*N oA [ XN
Xy, = Ay v é F(t) Xy: + i
* 3z i Zy X=XN Yi|zy

( (6.19)

= H(t)

i = N :
i EE.X vy
ax “Yi |

<
-y
[t}
»
~
H
+
Iw
(@]
—
N >
2 Z
| I |
>

X + ;@Q_ N
Y3 .
X=XN 1 aYl Zy

where Yvi is the ith column of A(t). If on the first iteration, we

set Xy. equal to zero for all i, and use the measured data to compute
XN

the vector [ ] , we have the derivative method which was discussed in

ZN
example 2.1.

6.2.3 Results

The results of this identification are illustrated in figures 17(a)

and 17(b). The parameter symbols are given in the first column. The
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second column contains the actual values of the parameters used to gener-
ate the data. The third column gives the estimates obtained by the equa-
tions of motion method. The next five columns contain estimates of the
parameters obtained from successive iterations by the method of quasi-
linearization. The last column contains estimates of the mean square
error in the parameter estimates. These estimates were obtained by
means of equation (2.32).

The numerical values of the parameters used in the W matrix do
not affect‘the parameter estimates obtained in the equations of motion
method for this’problem. These parameters were set equal to the number
1/Rji, i =1, . . ., 7 listed in the first column of figure 17(b).
These parameters were held fixed until the third iteration at which time
they were estimated from the resulting residuals. These estimates were
used to update the weighting matrix in the fourth iteration. Similarly,
the estimates obtained for theée’parameters in the fourth iteration were

used to update the weighting matrix in the fifth iteration.
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VII CONCLUDING REMARKS

A method of parameter estimation has‘been presented that combines
the best properties of the equations of motion and response curve fitting
techniques. In the absence of noise, the procedure provides a weighted
least-squares estimate for the unknown parameters in a single operation.
If there is moise in the system, this estimate will be biased. The bias
error can be removed by applying the procedure iteratively.

A canonical form is presented for multioutput systems. Modeling
the system in this canonical form provides a set of identifiable
parameters that can be estimated using the combined algorithm.

The combined élgorithm has been applied successfully to the
identification of the parameters in the longitudinal equations of

aircraft motion using both simulated and flight data.

A method has been presented for computing the sensitivity functﬁons

1
i

for constant-coefficient linear systems, which requires fewer differ-!
ential equation solutions than other methods. The method is based on\

1

linear transformations of solutions to a basic set of differential @
|

equations. For the single-output, multi-input system, these equations?
are particularly easy to implement. This technique for computing singie-
output sensitivity functions has been implemented and has substantiallf
reduced computation time.

Some suggestions have been made for simplifying the computation of
the integral square of the sensitivity functions. These integrals are
used in the method of quasi-linearization and in the combined algorithm.

It has been shown that the generalized equations of motion theory

discussed by Shinbrot can be used to derive the results presented by
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Luenberger and Bryson for observers of lower order. The generalized
equations of motion method also provides‘a useful method for designing

such observers.
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APPENDIX A

MINIMIZATION ALGORITHM

Many methods can be used to minimize the criterion

I = 3 %1 [yeen) - ?cti)]Twi[yctiJ - $t1)]
£
or 4 (A1)
sn =1 N [reo - 5] W [y - po]a
0

with réspect to the unknown parameters, y, in the constraint equations

e
Il

£f(X, u, v, t)
(A2)

h(x, u, vy, t)

<
I

Three of the more common methods are: (1) the first-order gradient
method, (2) the method of quasi-linearization, and (3) the second-order
gradient method. All of these methods can be related to the terms
retained in a Taylor series expansion of J about an initial estimate

of the unknown parameters denoted here by the subscript N,

T 02J
BYZ

1
Sy + 5-6y

9J
J(y) = Jy * oy
X=XN

8y + higher order terms (A3)
X=XN ’

- . 2 2 - . T e
By writing BJ/aylx=xN and 34J/dy lx=xN in terms of Yy e obtain

1

te 3
A _ Ty IN
X=XN 0
te T
3% - - 2y -y ) g 4 A4
o2l v VY TN 3y (A4)
Y X—XN
(6]
t t
3 YN T Yy . £ 52 N, ;
") &) te ) E NO oW

112



Using (A4) in (A3) we obtain

\

te oy ‘
J(v) -JN==AJ:=_J. (y-yN)TW E;E-dt Sy } first-order gradient

o}
tf foyn\M /9y
+ l-éyT 2N w N dt ¢Sy quasi-linearization
2 o oY ay
- E—Gy J; 5;3—-W(y-yN)dt Sy'f second-order gradient (A5)

The first-order gradient procedure retains only the first term in
the expaision (A5). It provides information on which direction the
parameters should be changed to reduce the cost J,

t 3

o7 = K j; - 0T e (46)
An advantage of the first-order gradient method is that sufficiently
small changes in the unknown parameters cause a reduction in the cost.
However, the analyst has no _way of determining the size of the parameter
change. One method is to include a quadratic penalty function in the
expression for the first-order gradient cost; in other words, choose &y
to minimize

AT = - ftf o -y W -z—?i dt &y + % Sy Bsy ° (A7)

0
where B 1is a positive definite weighting matrix. The choice of B is
dependent on the analyst's experience with the specific problem.

The method of quasi-linearization contains one additional term in
the Taylor series expansion. This term is quadratic and if the time
histories of ayN/ay are linearly independent (which is a condition for
identifiability) it is positive definite. Quasi-linearization can

therefore be considered a first-order gradient procedure with a special
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penalty function. It has the same advantages as the first-order
gradient procedure in that the parameter changes will be in a direction
that will reduce the function J, and only the first-order variations of
the model response are required. It has the added advantage that near
the minimum it begins to approach true second-order information since the
last term in the second-order expansion, (A5), tends toward zero at the
minimum (since y - yN).

The second-order procedure contains all the terms in the
expansion (A5). It is the most efficient adjustment algorithm to use
from points near the minimum. However, it has two disadvantages. First,
it requires seéond—order variations of the model response, and second,
if the initial estimate of the parameters is not near the minimum, the
function may have a negative curvature so the parameters will change in
the wrong direction.

The quasi-linearization procedure appears to provide a good
parameter adjustment scheme.for the parameter identification problem.
In order to relate the formulation of the method as presented here to

that discussed in section 2.2.1, it is only necessary to complete the

square.
te Ay 1 tf 3YNT N
we [T o e e Fort [0 5 as o
(o] 0]
tf y T ]
_1 hd\! N
L B e
CL Ty -y - vt (A8)

2 A N N

Noting that 9dyyn/dy corresponds to A(t) and that

tf T
f (y - yny) Wy - yy)dt
(8]
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is not affected by parameter variations dJvy, the minimization of (AS8)

is equivalent to the minimization discussed in section (2.2.1).
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APPENDIX B

THE DESIGN OF LINEAR OBSERVERS BY USING

INTEGRAL TRANSFORMS

B.1 INTRODUCTION

The Kalman filter is a well-known technique for estimating the
state of a system in the presence of noise (refs. 31, 32). This same
structure can also be used to observe the state in the noise-free prob-
lem if there are unknown initial conditions. However, Luenberger and
Bryson have developed elegant and explicit procedures for designing
observers for the noise-free problem that are of lower order than the
Kalman filter structure (refs. 36, 37, 41). They have shown that an
estimate of the state can be reconstructed from the system measurements
and the response of a (n - m)th order filter where n 1is the order of
the system and m 1is the number of independent measurements.

Luenberger has also shown that a linear function of the state can be
constructed from the system ﬁeasurements and the response of an even
lower order filter.

Althoﬁgh this report is primarily éoncerned with parameter
estimation,»there is a considerable similarity between this problem and
the problem of state observation. In particular, Shinbrot's generaliza-
tion of the equations of motion method through the use of integrél
transforms is very similar to the idea developed by Luenberger and Bryson
for reconstructing the state by passing the measurements through a
dynamic filter.

In this appendix, both the Kalman filter structure and the
structure for observers of lower order are obtained through the use of

integral transforms. Although the results are not basically new, an

116



example will be used to show that this technique provides an alternative
procedure for designing observers of lower order.

B.2 PRELIMINARY DISCUSSION

The problem can be stated as follows: Given a constant coefficient
linear system described by the equations

»

X

Fx + Gu x{0) = Xg (B1)

y = Hx (B2)
with unknown initial conditions, estimate the current state of the
system from the measurements of the system input u and output y. The
estimation Qf a linear function of the current state is a simple
extension of this problem and will also be considered.

If there are m independent measurements (B2) provides m
algebraic equations which are linear in the n unknown components of the
state vector x. If m < n, these equations cannot be solved for x
uniquely. The number of algebraic equatioﬁs can be increased if both

sides of (B2) are differentiated and (B1) is used to express the result-

ing equations in terms of x. This procedure results in the set of

equations
yo é y = H X )
yl A y - HGu = HF x
2 Aol _ - yp2
Yy 2y HFGu HF+x (B3)
yd &3 - wFileu = HFIx |

where yi (for each 1i) is defined as indicated and can be considered an
additional measurement. If n independent equations are obtained by

this procedure, we can, in principle, solve for the unknown state x and
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the system is said to be observable. The maximum superscript on vy

required to obtain n linearly independent equations is denoted by

v - 1; v is referred to as the observability index for the system. If

the system is observable, v must satisfy the inequality,
n/m-1s<v-1<n-mn (B4)

If the first n linearly independent equations in (B3) are used to

estimate the state, each additional measurement requires only a single

differentiation of a previous measurement. The state can therefore be

estimated by performing only n - m differentiations.

The difficulty with this approach is that it is usually not possible
to differentiaté'measured data even once, much less several times.

B.3 THE DESIGN OF SUPPLEMENTAL OBSERVERS OR OBSERVERS OF LOWER ORDER

An alternative to differentiating (B2) in order to obtain n
linearly indebendent equations is to take integral transforms of (B2).
This was the idea suggested_by Shinbrot in the identification problem.
The Laplace transform method, illustrated in example (2.2), illustrates
this type of procedure. In this section we will use the convolution

function, esi(t—T)

, as the method function. In order to simplify the
equations we will introduce a notation used by Lessing (ref. 29).

Notation B.1

t s; (t-1)
Tyz(t) 2 _f 1 z(t)dT (B5)
)
. . . . si(t-1)
where z(t) is either a vector or a scalar function of time, e

is a scalar, and s; 1is a complex or real number.
Two identities which will prove helpful are:

Identity B.1

Tix(t) = x(t) + siTyx(t) - xoeSit

(B6)
(Integration by parts)
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Identity B.2

t

°i (B7)

- -1 : -
Tijx(t) = Fi'x(t) - F] GTju(t) - Fj'xge
where
F; & [F - s;I]

and s; 1is not an eigenvalue of F.
Proof: Take the integral transform of both sides of (Bl). Because

s:t . . .
el is a scalar, this transform can be written

Tijx = FTijx + GTju (B8)

If identity Bl is used, equation (B8) can be written

x(t) = [F - siI]Tix(t) + GTju + xoeit (B9)

Since sj 1s not an eigenvalue of F, this equation can be solved for
Tix(t) as given in equation (B7) and this concludes the argument.
Let us now augment the set of algebraic equations (B2) as suggested

in the beginning of this section. The integral transform of (B2)
Tiy(t) = HT1x(t) (B10)

can be expressed in terms of x by means of identity (B2). This proce-
dure can then be repeated a number of times in order to obtain the

following sequence of equations:

Yo é y =H x+0 \
yl & 1, (yO+HF]  Gu) =HF]" x+e]
y2 & T, (y!+HF] 'F; Gu) =HF] T x+e5-Tpe]
f (B11)
yv_léTv_l(yv_2+HFilF£1...F;EIGUD=HF11F51...F;}1x+sv;1~Tb_lev_2
_"'Tv—lTv-z"'TZEI
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where

e = HFT . . . Fjlxe®]
and yj {for each j) is defined a® ind¥cated and can be considered an
additional measurement. If the system is observable, this sequence will
have n independent equations (see Lemma Bl and theorem Bl at the end
of this paragraph), which can be solved for x as a function of the
measurements yi and the functioms e;. The yi can be computed but
the ¢ are not knowr because the imitial comditions are not known.

Because the terms ¢j decay with a time constant dependent on s; and

i
because the sy can be chosen almost arbitrarily, x can be approximated
by solving (B1l) with the s; set equad to zewe. This approximation of
% is referred to 2s am estime®® of x» amd is denoted by X. The error
in the estimate would be proportiomal to the €3 which are, in turn,
proportional to the initial conditions.

Comment: If some of the initial comditions are known or
approximewely knoww, they can be imslwind in the measurements yi in
order to reduce the error in the estimate for x. Let XN, be a best

initial guess at the initial conditiens. The state can then be estimated

by solving n independent equations in the sequence

yo =y = Hx
-1 -1
yl & Ty (y+HF] Gu) +y§ eS1t - HF] x+g;
0
-1 -1 Sot -1 -1
y2 4 Tz(y1+HF11F2 Gu) +y§ e 2 = HF Fo x+e5-Toeq
0

- - 1= - -1 Sy-1t 1 1 -
y T (3 TRaEy L o)y e VT SHFT RS L F L e
aToeq

(B12)
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where

-1 -1 -
HF]'F; . . . Fil(x

(Y]
e
1

j -1.-1
}’1'31 HFl F2 . e . FJ XNO

with the e; set equal to zero.
We will now show that if the system has observability index v,

then there are n linearly independent equations in the sequence (B11).
Lemma B.1 If A, B, and C are three mq}rices such that the matrix

product ABC is defined, then the rank of this matrix product is related

to the ranks of A, B, and C by the inequality
Tp + Tg + To - G- P S Tppc S min(ry, TR, rc)

where Tps Tps Teo and TABC denote the rank of A, B, C, and ABC,
respectively, and where q and p are the number of columns in A and B,
respectively. B

Proof: Sylvester's inequality for the rank of the product of two

matrices, AB, states that
Tp +Tp - ST S min(rA, rB)
This implies

TA+TR+Tc-Q-DPSTpp+Te - P STygeSmin(ryp, rC) Smin(ryp, rg, re)
and this concludes the argument.

Theorem B.1l: If the observability index for a system (B.1l) is v,

then the matrix
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has rank n.
Proof:
H
HF; !
IRl
v-1
b -
because the Fj commute.
HF1Fp . . . F _, I
0
HF; 0
H 0
. - =
where I

is an m x m identity matrix and where the ai are the

coefficients of the polynomials.

(A +Sj)(>\ +sj+

1

— -
H
HF7
HF7! F1
v-1
HF1Fp . . . F .
[Fle
HFy
H
oy —J
In addition
1 1 1
alI aZI . av_ll
2 2
I ajl av—lI
I
0 0 I

HF\) -1

HF

HF

H

-

b

v-2

.

) - o . (A +sv-1) =AV‘J_+agAv—j—1 +a%x“'j'2.+_

(B13)

(B14)

v-j

The first matrix on the right of (B14) has rank nm, the second matrix

on the right of (B14) has rank n, and because each Fj
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the second matrix on the right of (B13) has rank n. By Lemma B.1
nm+n+n-nn-n<s rOI < min(nm, n, n)

which implies rOI (the rank of Oj) equals n and this concludes the
argument.

If the first n 1linearly independent equations in (B12) are used
to solve for X, each equation in addition to the first m equations can
be realized by passing a linear combination of previously generated
"measurements' through a first-order filter with initial condition
defined by the appropriate component of YNy A total of n - m addi-
tional equations is required. We can therefore estimate the state by
using a filter having order n - m with v - 1 distinct and almost
arbitrarily chosen eigenvalues. The filter can also be designed with
n - m distinct eigenvalues by using different transformations on each
of the measurements. One method involves a tedious selection procedure;
another method involves putting—£he system into the canonical form
discussed in Chapter III and applying the selection procedure defined
above for each ihdividual single-output subsfstem. This latter procedure
was used in reference 37. We therefore obtain the following important
result. |

Theorem B.2: Given a nth-order system (Bl) which is observable
through m independent measurements (B2), an estimate of the system
state can be constructed from the measurements of the input and output
and the response of a (n - m)th-order filter. The error in the estimate
will decay with a time constant equal to the negative of the real part of
the inverse of the eigenvalues in the filter. The eigenvalues of the
filter can be chosen arbitrarily, provided they do not equal any of the

system's eigenvalues.
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Comment: The eigenvalues of the observer can equal the eigenvalues
of the system, but in this case the transformation acts only on the sys-
tem input and not on the measurement. If s; is an eigenvalue of the
system, an equation relating x(t) and Tju can be obtained by taking
the inner product of equation (BY9) with the eigenvector associated with
F;.

In many cases a complete estimate of the state is not required.

For example, if we are designing a single input feedback control law,

we may require only a single linear combination of the states. It is
therefdre only necessary to estimate this linear function. It has been
shown in this section that an estimate of the state is given by a linear
transformation on the augmented measurements (yi, i=0,1, . . ., v-1).

This can be denoted by the matrix equation.

[0
- YI
X =D} °
V-1
Y
L. d

where D is a n x (v x m) matrix. A linear combination of the states
can therefore be estimated by a linear combination of the augmented

measurements. This linear combination can be written

m

v-1 . .
0,0 3]
t) = .y, *t .
a(e) = D lady? 2 oy
i=1 J
where yi is the ith component of yj. The individual terms in the

above summation can be defined
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and are the solutions to the single output systems

T TaI6T L e -
Y S1 0 0...0 Y 1 (i)Fl
.2 2 -1 -1
i 1 So 0 0 Yi 0 h(l)Fl Fy
= + yi*+ Gu
v-1 v-1 -1_-1 -1
i 0 0 1 s\\)_:1 Yi l_D h(i)Fl Fo” o .. F\5—1
' |
Vi
Zi= [a;di « o e Ct\]).-]]
V-1
Yi
— -

Because these systems have identical dynamics for all i, the summation
of the zj can be realized by a single system or order v - 1. This
provides a second important result, which was also first proved by
Luenberger.

Theorem B.3: If the system is observable, then an estimate of an
arbitrary linear function of the state can be constructed from the
measurements of the input and output and the response of a~(v - th
order filter.

Example B.1 Longitudinal Equations of Motion for an Aircraft

Consider the linearized longitudinal equations of motion for an
aircraft including both the short and long period modes. Assume that the
attitude rate, forward velocity, and the elevator input are the only
measured variables. The equations describing the system and its

measurements can be written
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r—.'— r— — g e =

u a1 a2 a13 auuflu Y

6 0 0 1 0 9 0

= + Se (B14)
q asy 0 agg asylla bj

a ay 0 1 aqp_u o by

Y1 =1

Y2 = q

Construct a state estimation of order n - m =

i)

constants of 0.5 second.

2 having time

ii) Construct a system of order v - 1 =1 that can be used to
estimate an arbitrary linear combination of the states.
Solution:

e'z(t-r)

i) If is used as the method function and definition 1 and

identity 1 are applied, then the integral transform of (Bl5) is given by

u(t) ajp+2  aj ags. ayy [|Tiu 0 u(0)
8 (t) 0 2 1 0 ||Ti0 0 8(0)| _,.
+ T8¢ + e (B16)
q(t) ‘agy 0 agz+2  agy |[Tiqf |bs q(0)
a(t) ay 0 1 ayy+2 ;Fla by a(0)

If the initial conditions are known, then, because. u(t) and q(t)
are measured and since we can generate T;u(t) and T;q(t), equafion (B16)
provides four equations in the four unknowns 6(t), a(t), T;0(t), aﬁd
Ti1a(t). These equations can be solved for Tia(t), T;0(t), ©(t), and

a(t) if the third, first, second and fourth equations, respectively, are

used as indicated below.

Tio(t) =q(t)/agy-(as1/azy)Tiu-(ags+2)/ag,Tiq-(ba/a3y)T18,-q (0)/agye”?*

(B17)
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Tle(t)‘=u(t)/aIZ‘(all+2)/312T1u“(313/312)TIQ‘(alu/alz)Tla'u(0)/3123-2t
=u(t)/ays-(a1y/a1zazy)q(t)-[(a11+2)/a15-a14a31/210a3,]T1u
-[a13/a12-a14(a33+2)/a1a34]Trq+aiybg/a)0a3,T 8

-[u(0)/212- (814/a12334)q (0)] e 2" (B18)

6(t) =2T19(t)+T1Q(t)+9(0)e_2t==2(u(t)/312~(alu/alzaquQCt))
-2[tal1+2)/312-314331/31233u]Tlu
-[2(a13/a12-214(a33+2) /a1 223,) +1] T1q+2a14b3/ 21283, T1 8¢
“tZ(U(O)/alz-(alu/alzasu)Q(O))-9(O)Je—Zt (B19)

a(t) = ay1T1usT1q+ (ayy+2) TyorbyT1 8 +a(0)e 2

= [(ayy*2)/azy]q(t)+[ay1- (ayy+2)agi/agy ] Tiu
+[1- (ayy+2) (ag3+2) /a3y ]T1q+ [by- (ayu+2)b3/a3,] T18e
+[2(0)- ((auy+2) /az)q(@]e™*" (B20)
Since all of the terms on the right hand side of these equations are
known except for the initial conditions, estimates for 6(t) and a(t)

can be obtained by neglecting the initial conditions. The errors in the

estimates would be

a(t) - a(t) = [a(0) - ((ayy + 2)/asy)q(0)]e "

o(t) - B(t) = [6(0) - 2(u(0)/a1p - (aiu/a1pa3u)q(0))]e 2"

The state observer therefore consists of two identical and uncoupled

first-order systems. Their structures are indicated in figure 18.
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Figure 18.- Estimation of attitude and angle of attack from
measurements of attitude rate and forward velocity.



ii) Because the state observer was constructed so that both
unmeasured states were estimated by identical first-order systems, a
linear combination of the estimated states can be obtained by using a
single first-order system. The estimation of an arbitrary linear combina-
tion of the system states, cju(t) + cp6(t) + cyq(t) + cyo(t), can
therefore be estimated as shown in figure 19.

B.4 LINEAR OBSERVER OF ORDER n

Consider the integral transform of (Bl) with the n x n matrix

eFN(t—T) as the method function,

t t
J’ eFN(E-T)5 (1ydr = .f FNCE=T) 1py (1) + Gu(o)]dr (B21)
(o] ' o
If the left hand side of (B21) is integrated by parts and the terms are
combined, this equation can be written

t
JF SN - Eylx(t) + Gu(t)Mdt + eFNtxo (B22)
o .

If Fy is chosen so that F - Fy = KH, then (B2) can be used in (B22)
to obtain a relationship between x(t), y(t), u(t), and xgq,
b Eg(t-1) Fyt
x(t) = J. e'N {Ky(t) + Gu(t)}dt + e N'x, (B23)
o
so that an estimate of x(t) is given by
~ t Fy(t-1)
x(t) = J° e N {Ky(t) + Gu(t)}dr (B24)
0

and the error in the estimate is given by

x(t) - &(t) = &Nty
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Since it is possible to arbitfarily place the eigenvalues of F - KH by
an appropriate choice of 'K, the error in the estimate can be made to go
to zero arbitrarily fast. Equation (B24) is the solution to the

differential equation
X=FR + Gu+ K[y - HR]  R(0) = xo (B25)

which has the same structure as the state estimators studied by Kalman

and Luenberger.
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